This is a copy of the community maintained fork of the open firmware which powers RNode devices. This version will have support for the hardware made by Mees Electronics.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2408 lines
59 KiB

// Copyright (c) Sandeep Mistry. All rights reserved.
// Licensed under the MIT license.
// Modifications and additions copyright 2024 by Mark Qvist & Jacob Eva
// Obviously still under the MIT license.
#include "Radio.h"
#if PLATFORM == PLATFORM_ESP32
#if defined(ESP32) and !defined(CONFIG_IDF_TARGET_ESP32S3)
#include "soc/rtc_wdt.h"
#endif
#define ISR_VECT IRAM_ATTR
#else
#define ISR_VECT
#endif
#define MAX_PKT_LENGTH 255
// SX126x registers
#define OP_RF_FREQ_6X 0x86
#define OP_SLEEP_6X 0x84
#define OP_STANDBY_6X 0x80
#define OP_TX_6X 0x83
#define OP_RX_6X 0x82
#define OP_PA_CONFIG_6X 0x95
#define OP_SET_IRQ_FLAGS_6X 0x08 // also provides info such as
// preamble detection, etc for
// knowing when it's safe to switch
// antenna modes
#define OP_CLEAR_IRQ_STATUS_6X 0x02
#define OP_GET_IRQ_STATUS_6X 0x12
#define OP_RX_BUFFER_STATUS_6X 0x13
#define OP_PACKET_STATUS_6X 0x14 // get snr & rssi of last packet
#define OP_CURRENT_RSSI_6X 0x15
#define OP_MODULATION_PARAMS_6X 0x8B // bw, sf, cr, etc.
#define OP_PACKET_PARAMS_6X 0x8C // crc, preamble, payload length, etc.
#define OP_STATUS_6X 0xC0
#define OP_TX_PARAMS_6X 0x8E // set dbm, etc
#define OP_PACKET_TYPE_6X 0x8A
#define OP_BUFFER_BASE_ADDR_6X 0x8F
#define OP_READ_REGISTER_6X 0x1D
#define OP_WRITE_REGISTER_6X 0x0D
#define OP_DIO3_TCXO_CTRL_6X 0x97
#define OP_DIO2_RF_CTRL_6X 0x9D
#define OP_CAD_PARAMS 0x88
#define OP_CALIBRATE_6X 0x89
#define OP_RX_TX_FALLBACK_MODE_6X 0x93
#define OP_REGULATOR_MODE_6X 0x96
#define OP_CALIBRATE_IMAGE_6X 0x98
#define MASK_CALIBRATE_ALL 0x7f
#define IRQ_TX_DONE_MASK_6X 0x01
#define IRQ_RX_DONE_MASK_6X 0x02
#define IRQ_HEADER_DET_MASK_6X 0x10
#define IRQ_PREAMBLE_DET_MASK_6X 0x04
#define IRQ_PAYLOAD_CRC_ERROR_MASK_6X 0x40
#define IRQ_ALL_MASK_6X 0b0100001111111111
#define MODE_LONG_RANGE_MODE_6X 0x01
#define OP_FIFO_WRITE_6X 0x0E
#define OP_FIFO_READ_6X 0x1E
#define REG_OCP_6X 0x08E7
#define REG_LNA_6X 0x08AC // no agc in sx1262
#define REG_SYNC_WORD_MSB_6X 0x0740
#define REG_SYNC_WORD_LSB_6X 0x0741
#define REG_PAYLOAD_LENGTH_6X 0x0702 // https://github.com/beegee-tokyo/SX126x-Arduino/blob/master/src/radio/sx126x/sx126x.h#L98
#define REG_RANDOM_GEN_6X 0x0819
#define MODE_TCXO_3_3V_6X 0x07
#define MODE_TCXO_3_0V_6X 0x06
#define MODE_TCXO_2_7V_6X 0x06
#define MODE_TCXO_2_4V_6X 0x06
#define MODE_TCXO_2_2V_6X 0x03
#define MODE_TCXO_1_8V_6X 0x02
#define MODE_TCXO_1_7V_6X 0x01
#define MODE_TCXO_1_6V_6X 0x00
#define MODE_STDBY_RC_6X 0x00
#define MODE_STDBY_XOSC_6X 0x01
#define MODE_FALLBACK_STDBY_RC_6X 0x20
#define MODE_IMPLICIT_HEADER 0x01
#define MODE_EXPLICIT_HEADER 0x00
#define SYNC_WORD_6X 0x1424
#define XTAL_FREQ_6X (double)32000000
#define FREQ_DIV_6X (double)pow(2.0, 25.0)
#define FREQ_STEP_6X (double)(XTAL_FREQ_6X / FREQ_DIV_6X)
extern int packet_interface;
extern RadioInterface* interface_obj[];
// ISRs cannot provide parameters to the functions they call. Since we have
// multiple radio objects, we have to read each dio0 pin for each one and see
// which one is high. We can then use the index of this pin in the 2D array to
// call the correct object.
void onDio0Rise() {
for (int i = 0; i < INTERFACE_COUNT; i++) {
if (digitalRead(interface_pins[i][5]) == HIGH) {
packet_interface = i;
RadioInterface* obj = interface_obj[i];
obj->handleDio0Rise();
break;
}
}
}
sx126x::sx126x(uint8_t index, SPIClass spi, bool tcxo, bool dio2_as_rf_switch, int ss, int sclk, int mosi, int miso, int reset, int dio0, int busy, int rxen) :
RadioInterface(index),
_spiSettings(8E6, MSBFIRST, SPI_MODE0),
_spiModem(spi),
_ss(ss), _sclk(sclk), _mosi(mosi), _miso(miso), _reset(reset), _dio0(dio0),
_busy(busy), _rxen(rxen), _frequency(0), _txp(0), _sf(0x07), _bw(0x04),
_cr(0x01), _ldro(0x00), _packetIndex(0), _implicitHeaderMode(0),
_payloadLength(255), _crcMode(1), _fifo_tx_addr_ptr(0), _fifo_rx_addr_ptr(0),
_packet({0}), _preinit_done(false), _tcxo(tcxo),
_dio2_as_rf_switch(dio2_as_rf_switch)
{
// overide Stream timeout value
setTimeout(0);
// TODO, figure out why this has to be done. Using the index to reference the
// interface_obj list causes a crash otherwise
_index = getIndex();
}
bool sx126x::preInit() {
pinMode(_ss, OUTPUT);
digitalWrite(_ss, HIGH);
// todo: check if this change causes issues on any platforms
#if MCU_VARIANT == MCU_ESP32
if (_sclk != -1 && _miso != -1 && _mosi != -1 && _ss != -1) {
_spiModem.begin(_sclk, _miso, _mosi, _ss);
} else {
_spiModem.begin();
}
#else
_spiModem.begin();
#endif
// check version (retry for up to 2 seconds)
// TODO: Actually read version registers, not syncwords
long start = millis();
uint8_t syncmsb;
uint8_t synclsb;
while (((millis() - start) < 2000) && (millis() >= start)) {
syncmsb = readRegister(REG_SYNC_WORD_MSB_6X);
synclsb = readRegister(REG_SYNC_WORD_LSB_6X);
if ( uint16_t(syncmsb << 8 | synclsb) == 0x1424 || uint16_t(syncmsb << 8 | synclsb) == 0x4434) {
break;
}
delay(100);
}
if ( uint16_t(syncmsb << 8 | synclsb) != 0x1424 && uint16_t(syncmsb << 8 | synclsb) != 0x4434) {
return false;
}
_preinit_done = true;
return true;
}
uint8_t ISR_VECT sx126x::readRegister(uint16_t address)
{
return singleTransfer(OP_READ_REGISTER_6X, address, 0x00);
}
void sx126x::writeRegister(uint16_t address, uint8_t value)
{
singleTransfer(OP_WRITE_REGISTER_6X, address, value);
}
uint8_t ISR_VECT sx126x::singleTransfer(uint8_t opcode, uint16_t address, uint8_t value)
{
waitOnBusy();
uint8_t response;
digitalWrite(_ss, LOW);
_spiModem.beginTransaction(_spiSettings);
_spiModem.transfer(opcode);
_spiModem.transfer((address & 0xFF00) >> 8);
_spiModem.transfer(address & 0x00FF);
if (opcode == OP_READ_REGISTER_6X) {
_spiModem.transfer(0x00);
}
response = _spiModem.transfer(value);
_spiModem.endTransaction();
digitalWrite(_ss, HIGH);
return response;
}
void sx126x::rxAntEnable()
{
if (_rxen != -1) {
digitalWrite(_rxen, HIGH);
}
}
void sx126x::loraMode() {
// enable lora mode on the SX1262 chip
uint8_t mode = MODE_LONG_RANGE_MODE_6X;
executeOpcode(OP_PACKET_TYPE_6X, &mode, 1);
}
void sx126x::waitOnBusy() {
unsigned long time = millis();
while (digitalRead(_busy) == HIGH)
{
if (millis() >= (time + 100)) {
break;
}
// do nothing
}
}
void sx126x::executeOpcode(uint8_t opcode, uint8_t *buffer, uint8_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
_spiModem.beginTransaction(_spiSettings);
_spiModem.transfer(opcode);
for (int i = 0; i < size; i++)
{
_spiModem.transfer(buffer[i]);
}
_spiModem.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx126x::executeOpcodeRead(uint8_t opcode, uint8_t *buffer, uint8_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
_spiModem.beginTransaction(_spiSettings);
_spiModem.transfer(opcode);
_spiModem.transfer(0x00);
for (int i = 0; i < size; i++)
{
buffer[i] = _spiModem.transfer(0x00);
}
_spiModem.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx126x::writeBuffer(const uint8_t* buffer, size_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
_spiModem.beginTransaction(_spiSettings);
_spiModem.transfer(OP_FIFO_WRITE_6X);
_spiModem.transfer(_fifo_tx_addr_ptr);
for (int i = 0; i < size; i++)
{
_spiModem.transfer(buffer[i]);
_fifo_tx_addr_ptr++;
}
_spiModem.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx126x::readBuffer(uint8_t* buffer, size_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
_spiModem.beginTransaction(_spiSettings);
_spiModem.transfer(OP_FIFO_READ_6X);
_spiModem.transfer(_fifo_rx_addr_ptr);
_spiModem.transfer(0x00);
for (int i = 0; i < size; i++)
{
buffer[i] = _spiModem.transfer(0x00);
}
_spiModem.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx126x::setModulationParams(uint8_t sf, uint8_t bw, uint8_t cr, int ldro) {
// because there is no access to these registers on the sx1262, we have
// to set all these parameters at once or not at all.
uint8_t buf[8];
buf[0] = sf;
buf[1] = bw;
buf[2] = cr;
// low data rate toggle
buf[3] = ldro;
// unused params in LoRa mode
buf[4] = 0x00;
buf[5] = 0x00;
buf[6] = 0x00;
buf[7] = 0x00;
executeOpcode(OP_MODULATION_PARAMS_6X, buf, 8);
}
void sx126x::setPacketParams(uint32_t preamble, uint8_t headermode, uint8_t length, uint8_t crc) {
// because there is no access to these registers on the sx1262, we have
// to set all these parameters at once or not at all.
uint8_t buf[9];
buf[0] = uint8_t((preamble & 0xFF00) >> 8);
buf[1] = uint8_t((preamble & 0x00FF));
buf[2] = headermode;
buf[3] = length;
buf[4] = crc;
// standard IQ setting (no inversion)
buf[5] = 0x00;
// unused params
buf[6] = 0x00;
buf[7] = 0x00;
buf[8] = 0x00;
executeOpcode(OP_PACKET_PARAMS_6X, buf, 9);
}
void sx126x::reset(void) {
if (_reset != -1) {
pinMode(_reset, OUTPUT);
// perform reset
digitalWrite(_reset, LOW);
delay(10);
digitalWrite(_reset, HIGH);
delay(10);
}
}
void sx126x::calibrate(void) {
// Put in STDBY_RC mode before calibration
uint8_t mode_byte = MODE_STDBY_RC_6X;
executeOpcode(OP_STANDBY_6X, &mode_byte, 1);
// calibrate RC64k, RC13M, PLL, ADC and image
uint8_t calibrate = MASK_CALIBRATE_ALL;
executeOpcode(OP_CALIBRATE_6X, &calibrate, 1);
delay(5);
waitOnBusy();
}
void sx126x::calibrate_image(uint32_t frequency) {
uint8_t image_freq[2] = {0};
if (frequency >= 430E6 && frequency <= 440E6) {
image_freq[0] = 0x6B;
image_freq[1] = 0x6F;
}
else if (frequency >= 470E6 && frequency <= 510E6) {
image_freq[0] = 0x75;
image_freq[1] = 0x81;
}
else if (frequency >= 779E6 && frequency <= 787E6) {
image_freq[0] = 0xC1;
image_freq[1] = 0xC5;
}
else if (frequency >= 863E6 && frequency <= 870E6) {
image_freq[0] = 0xD7;
image_freq[1] = 0xDB;
}
else if (frequency >= 902E6 && frequency <= 928E6) {
image_freq[0] = 0xE1;
image_freq[1] = 0xE9;
}
executeOpcode(OP_CALIBRATE_IMAGE_6X, image_freq, 2);
waitOnBusy();
}
int sx126x::begin()
{
reset();
if (_busy != -1) {
pinMode(_busy, INPUT);
}
if (!_preinit_done) {
if (!preInit()) {
return false;
}
}
if (_rxen != -1) {
pinMode(_rxen, OUTPUT);
}
calibrate();
calibrate_image(_frequency);
enableTCXO();
loraMode();
standby();
// Set sync word
setSyncWord(SYNC_WORD_6X);
if (_dio2_as_rf_switch) {
// enable dio2 rf switch
uint8_t byte = 0x01;
executeOpcode(OP_DIO2_RF_CTRL_6X, &byte, 1);
}
rxAntEnable();
setFrequency(_frequency);
setTxPower(_txp);
enableCrc();
// set LNA boost
writeRegister(REG_LNA_6X, 0x96);
// set base addresses
uint8_t basebuf[2] = {0};
executeOpcode(OP_BUFFER_BASE_ADDR_6X, basebuf, 2);
setModulationParams(_sf, _bw, _cr, _ldro);
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
_radio_online = true;
return 1;
}
void sx126x::end()
{
// put in sleep mode
sleep();
// stop SPI
_spiModem.end();
_bitrate = 0;
_radio_online = false;
_preinit_done = false;
}
int sx126x::beginPacket(int implicitHeader)
{
standby();
if (implicitHeader) {
implicitHeaderMode();
} else {
explicitHeaderMode();
}
_payloadLength = 0;
_fifo_tx_addr_ptr = 0;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
return 1;
}
int sx126x::endPacket()
{
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
// put in single TX mode
uint8_t timeout[3] = {0};
executeOpcode(OP_TX_6X, timeout, 3);
uint8_t buf[2];
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2);
// wait for TX done
while ((buf[1] & IRQ_TX_DONE_MASK_6X) == 0) {
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2);
yield();
}
// clear IRQ's
uint8_t mask[2];
mask[0] = 0x00;
mask[1] = IRQ_TX_DONE_MASK_6X;
executeOpcode(OP_CLEAR_IRQ_STATUS_6X, mask, 2);
return 1;
}
uint8_t sx126x::modemStatus() {
// imitate the register status from the sx1276 / 78
uint8_t buf[2] = {0};
executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2);
uint8_t clearbuf[2] = {0};
uint8_t byte = 0x00;
if ((buf[1] & IRQ_PREAMBLE_DET_MASK_6X) != 0) {
byte = byte | 0x01 | 0x04;
// clear register after reading
clearbuf[1] = IRQ_PREAMBLE_DET_MASK_6X;
}
if ((buf[1] & IRQ_HEADER_DET_MASK_6X) != 0) {
byte = byte | 0x02 | 0x04;
}
executeOpcode(OP_CLEAR_IRQ_STATUS_6X, clearbuf, 2);
return byte;
}
uint8_t sx126x::currentRssiRaw() {
uint8_t byte = 0;
executeOpcodeRead(OP_CURRENT_RSSI_6X, &byte, 1);
return byte;
}
int ISR_VECT sx126x::currentRssi() {
uint8_t byte = 0;
executeOpcodeRead(OP_CURRENT_RSSI_6X, &byte, 1);
int rssi = -(int(byte)) / 2;
return rssi;
}
uint8_t sx126x::packetRssiRaw() {
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3);
return buf[2];
}
int ISR_VECT sx126x::packetRssi() {
// may need more calculations here
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3);
int pkt_rssi = -buf[0] / 2;
return pkt_rssi;
}
uint8_t ISR_VECT sx126x::packetSnrRaw() {
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3);
return buf[1];
}
float ISR_VECT sx126x::packetSnr() {
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3);
return float(buf[1]) * 0.25;
}
long sx126x::packetFrequencyError()
{
// todo: implement this, no idea how to check it on the sx1262
const float fError = 0.0;
return static_cast<long>(fError);
}
size_t sx126x::write(uint8_t byte)
{
return write(&byte, sizeof(byte));
}
size_t sx126x::write(const uint8_t *buffer, size_t size)
{
if ((_payloadLength + size) > MAX_PKT_LENGTH) {
size = MAX_PKT_LENGTH - _payloadLength;
}
// write data
writeBuffer(buffer, size);
_payloadLength = _payloadLength + size;
return size;
}
int ISR_VECT sx126x::available()
{
uint8_t buf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, buf, 2);
return buf[0] - _packetIndex;
}
int ISR_VECT sx126x::read()
{
if (!available()) {
return -1;
}
// if received new packet
if (_packetIndex == 0) {
uint8_t rxbuf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, rxbuf, 2);
int size = rxbuf[0];
_fifo_rx_addr_ptr = rxbuf[1];
readBuffer(_packet, size);
}
uint8_t byte = _packet[_packetIndex];
_packetIndex++;
return byte;
}
int sx126x::peek()
{
if (!available()) {
return -1;
}
// if received new packet
if (_packetIndex == 0) {
uint8_t rxbuf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, rxbuf, 2);
int size = rxbuf[0];
_fifo_rx_addr_ptr = rxbuf[1];
readBuffer(_packet, size);
}
uint8_t b = _packet[_packetIndex];
return b;
}
void sx126x::flush()
{
}
void sx126x::onReceive(void(*callback)(uint8_t, int))
{
_onReceive = callback;
if (callback) {
pinMode(_dio0, INPUT);
// set preamble and header detection irqs, plus dio0 mask
uint8_t buf[8];
// set irq masks, enable all
buf[0] = 0xFF;
buf[1] = 0xFF;
// set dio0 masks
buf[2] = 0x00;
buf[3] = IRQ_RX_DONE_MASK_6X;
// set dio1 masks
buf[4] = 0x00;
buf[5] = 0x00;
// set dio2 masks
buf[6] = 0x00;
buf[7] = 0x00;
executeOpcode(OP_SET_IRQ_FLAGS_6X, buf, 8);
#ifdef SPI_HAS_NOTUSINGINTERRUPT
_spiModem.usingInterrupt(digitalPinToInterrupt(_dio0));
#endif
// make function available
extern void onDio0Rise();
attachInterrupt(digitalPinToInterrupt(_dio0), onDio0Rise, RISING);
} else {
detachInterrupt(digitalPinToInterrupt(_dio0));
#ifdef SPI_HAS_NOTUSINGINTERRUPT
_spiModem.notUsingInterrupt(digitalPinToInterrupt(_dio0));
#endif
}
}
void sx126x::receive(int size)
{
if (size > 0) {
implicitHeaderMode();
// tell radio payload length
_payloadLength = size;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
} else {
explicitHeaderMode();
}
if (_rxen != -1) {
rxAntEnable();
}
uint8_t mode[3] = {0xFF, 0xFF, 0xFF}; // continuous mode
executeOpcode(OP_RX_6X, mode, 3);
}
void sx126x::standby()
{
uint8_t byte;
if (_tcxo) {
// STDBY_XOSC
byte = MODE_STDBY_XOSC_6X;
} else {
// STDBY_RC
byte = MODE_STDBY_RC_6X;
}
executeOpcode(OP_STANDBY_6X, &byte, 1);
}
void sx126x::sleep()
{
uint8_t byte = 0x00;
executeOpcode(OP_SLEEP_6X, &byte, 1);
}
void sx126x::enableTCXO() {
if (_tcxo) {
#if BOARD_MODEL == BOARD_RAK4631 || BOARD_MODEL == BOARD_HELTEC32_V3
uint8_t buf[4] = {MODE_TCXO_3_3V_6X, 0x00, 0x00, 0xFF};
#elif BOARD_MODEL == BOARD_TBEAM
uint8_t buf[4] = {MODE_TCXO_1_8V_6X, 0x00, 0x00, 0xFF};
#elif BOARD_MODEL == BOARD_RNODE_NG_22
uint8_t buf[4] = {MODE_TCXO_1_8V_6X, 0x00, 0x00, 0xFF};
#else
uint8_t buf[4] = {0};
#endif
executeOpcode(OP_DIO3_TCXO_CTRL_6X, buf, 4);
}
}
// TODO: Once enabled, SX1262 needs a complete reset to disable TCXO
void sx126x::disableTCXO() { }
void sx126x::setTxPower(int level, int outputPin) {
// currently no low power mode for SX1262 implemented, assuming PA boost
// WORKAROUND - Better Resistance of the SX1262 Tx to Antenna Mismatch, see DS_SX1261-2_V1.2 datasheet chapter 15.2
// RegTxClampConfig = @address 0x08D8
writeRegister(0x08D8, readRegister(0x08D8) | (0x0F << 1));
uint8_t pa_buf[4];
pa_buf[0] = 0x04; // PADutyCycle needs to be 0x04 to achieve 22dBm output, but can be lowered for better efficiency at lower outputs
pa_buf[1] = 0x07; // HPMax at 0x07 is maximum supported for SX1262
pa_buf[2] = 0x00; // DeviceSel 0x00 for SX1262 (0x01 for SX1261)
pa_buf[3] = 0x01; // PALut always 0x01 (reserved according to datasheet)
executeOpcode(OP_PA_CONFIG_6X, pa_buf, 4); // set pa_config for high power
if (level > 22) { level = 22; }
else if (level < -9) { level = -9; }
_txp = level;
writeRegister(REG_OCP_6X, 0x38); // 160mA limit, overcurrent protection
uint8_t tx_buf[2];
tx_buf[0] = level;
tx_buf[1] = 0x02; // PA ramping time - 40 microseconds
executeOpcode(OP_TX_PARAMS_6X, tx_buf, 2);
}
uint8_t sx126x::getTxPower() {
return _txp;
}
void sx126x::setFrequency(uint32_t frequency) {
_frequency = frequency;
uint8_t buf[4];
uint32_t freq = (uint32_t)((double)frequency / (double)FREQ_STEP_6X);
buf[0] = ((freq >> 24) & 0xFF);
buf[1] = ((freq >> 16) & 0xFF);
buf[2] = ((freq >> 8) & 0xFF);
buf[3] = (freq & 0xFF);
executeOpcode(OP_RF_FREQ_6X, buf, 4);
}
uint32_t sx126x::getFrequency() {
// we can't read the frequency on the sx1262 / 80
uint32_t frequency = _frequency;
return frequency;
}
void sx126x::setSpreadingFactor(int sf)
{
if (sf < 5) {
sf = 5;
} else if (sf > 12) {
sf = 12;
}
_sf = sf;
handleLowDataRate();
setModulationParams(sf, _bw, _cr, _ldro);
}
uint8_t sx126x::getSpreadingFactor()
{
return _sf;
}
uint32_t sx126x::getSignalBandwidth()
{
int bw = _bw;
switch (bw) {
case 0x00: return 7.8E3;
case 0x01: return 15.6E3;
case 0x02: return 31.25E3;
case 0x03: return 62.5E3;
case 0x04: return 125E3;
case 0x05: return 250E3;
case 0x06: return 500E3;
case 0x08: return 10.4E3;
case 0x09: return 20.8E3;
case 0x0A: return 41.7E3;
}
return 0;
}
void sx126x::handleLowDataRate(){
if ( long( (1<<_sf) / (getSignalBandwidth()/1000)) > 16) {
_ldro = 0x01;
} else {
_ldro = 0x00;
}
}
void sx126x::optimizeModemSensitivity(){
// todo: check if there's anything the sx1262 can do here
}
void sx126x::setSignalBandwidth(uint32_t sbw)
{
if (sbw <= 7.8E3) {
_bw = 0x00;
} else if (sbw <= 10.4E3) {
_bw = 0x08;
} else if (sbw <= 15.6E3) {
_bw = 0x01;
} else if (sbw <= 20.8E3) {
_bw = 0x09;
} else if (sbw <= 31.25E3) {
_bw = 0x02;
} else if (sbw <= 41.7E3) {
_bw = 0x0A;
} else if (sbw <= 62.5E3) {
_bw = 0x03;
} else if (sbw <= 125E3) {
_bw = 0x04;
} else if (sbw <= 250E3) {
_bw = 0x05;
} else /*if (sbw <= 250E3)*/ {
_bw = 0x06;
}
handleLowDataRate();
setModulationParams(_sf, _bw, _cr, _ldro);
optimizeModemSensitivity();
}
void sx126x::setCodingRate4(int denominator)
{
if (denominator < 5) {
denominator = 5;
} else if (denominator > 8) {
denominator = 8;
}
int cr = denominator - 4;
_cr = cr;
setModulationParams(_sf, _bw, cr, _ldro);
}
uint8_t sx126x::getCodingRate4()
{
return _cr + 4;
}
void sx126x::setPreambleLength(long length)
{
_preambleLength = length;
setPacketParams(length, _implicitHeaderMode, _payloadLength, _crcMode);
}
void sx126x::setSyncWord(uint16_t sw)
{
// TODO: Fix
// writeRegister(REG_SYNC_WORD_MSB_6X, (sw & 0xFF00) >> 8);
// writeRegister(REG_SYNC_WORD_LSB_6X, sw & 0x00FF);
writeRegister(REG_SYNC_WORD_MSB_6X, 0x14);
writeRegister(REG_SYNC_WORD_LSB_6X, 0x24);
}
void sx126x::enableCrc()
{
_crcMode = 1;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
void sx126x::disableCrc()
{
_crcMode = 0;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
byte sx126x::random()
{
return readRegister(REG_RANDOM_GEN_6X);
}
void sx126x::setSPIFrequency(uint32_t frequency)
{
_spiSettings = SPISettings(frequency, MSBFIRST, SPI_MODE0);
}
void sx126x::dumpRegisters(Stream& out)
{
for (int i = 0; i < 128; i++) {
out.print("0x");
out.print(i, HEX);
out.print(": 0x");
out.println(readRegister(i), HEX);
}
}
void sx126x::explicitHeaderMode()
{
_implicitHeaderMode = 0;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
void sx126x::implicitHeaderMode()
{
_implicitHeaderMode = 1;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
void ISR_VECT sx126x::handleDio0Rise()
{
uint8_t buf[2];
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2);
executeOpcode(OP_CLEAR_IRQ_STATUS_6X, buf, 2);
if ((buf[1] & IRQ_PAYLOAD_CRC_ERROR_MASK_6X) == 0) {
// received a packet
_packetIndex = 0;
// read packet length
uint8_t rxbuf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, rxbuf, 2);
int packetLength = rxbuf[0];
if (_onReceive) {
_onReceive(_index, packetLength);
}
}
// else {
// Serial.println("CRCE");
// Serial.println(buf[0]);
// Serial.println(buf[1]);
// }
}
void sx126x::updateBitrate() {
if (_radio_online) {
_lora_symbol_rate = (float)getSignalBandwidth()/(float)(pow(2, _sf));
_lora_symbol_time_ms = (1.0/_lora_symbol_rate)*1000.0;
_bitrate = (uint32_t)(_sf * ( (4.0/(float)(_cr+4)) / ((float)(pow(2, _sf))/((float)getSignalBandwidth()/1000.0)) ) * 1000.0);
_lora_us_per_byte = 1000000.0/((float)_bitrate/8.0);
//_csma_slot_ms = _lora_symbol_time_ms*10;
float target_preamble_symbols = (LORA_PREAMBLE_TARGET_MS/_lora_symbol_time_ms)-LORA_PREAMBLE_SYMBOLS_HW;
if (target_preamble_symbols < LORA_PREAMBLE_SYMBOLS_MIN) {
target_preamble_symbols = LORA_PREAMBLE_SYMBOLS_MIN;
} else {
target_preamble_symbols = ceil(target_preamble_symbols);
}
_preambleLength = (long)target_preamble_symbols;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
} else {
_bitrate = 0;
}
}
// SX127x registers
#define REG_FIFO_7X 0x00
#define REG_OP_MODE_7X 0x01
#define REG_FRF_MSB_7X 0x06
#define REG_FRF_MID_7X 0x07
#define REG_FRF_LSB_7X 0x08
#define REG_PA_CONFIG_7X 0x09
#define REG_OCP_7X 0x0b
#define REG_LNA_7X 0x0c
#define REG_FIFO_ADDR_PTR_7X 0x0d
#define REG_FIFO_TX_BASE_ADDR_7X 0x0e
#define REG_FIFO_RX_BASE_ADDR_7X 0x0f
#define REG_FIFO_RX_CURRENT_ADDR_7X 0x10
#define REG_IRQ_FLAGS_7X 0x12
#define REG_RX_NB_BYTES_7X 0x13
#define REG_MODEM_STAT_7X 0x18
#define REG_PKT_SNR_VALUE_7X 0x19
#define REG_PKT_RSSI_VALUE_7X 0x1a
#define REG_RSSI_VALUE_7X 0x1b
#define REG_MODEM_CONFIG_1_7X 0x1d
#define REG_MODEM_CONFIG_2_7X 0x1e
#define REG_PREAMBLE_MSB_7X 0x20
#define REG_PREAMBLE_LSB_7X 0x21
#define REG_PAYLOAD_LENGTH_7X 0x22
#define REG_MODEM_CONFIG_3_7X 0x26
#define REG_FREQ_ERROR_MSB_7X 0x28
#define REG_FREQ_ERROR_MID_7X 0x29
#define REG_FREQ_ERROR_LSB_7X 0x2a
#define REG_RSSI_WIDEBAND_7X 0x2c
#define REG_DETECTION_OPTIMIZE_7X 0x31
#define REG_HIGH_BW_OPTIMIZE_1_7X 0x36
#define REG_DETECTION_THRESHOLD_7X 0x37
#define REG_SYNC_WORD_7X 0x39
#define REG_HIGH_BW_OPTIMIZE_2_7X 0x3a
#define REG_DIO_MAPPING_1_7X 0x40
#define REG_VERSION_7X 0x42
#define REG_TCXO_7X 0x4b
#define REG_PA_DAC_7X 0x4d
// Modes
#define MODE_LONG_RANGE_MODE_7X 0x80
#define MODE_SLEEP_7X 0x00
#define MODE_STDBY_7X 0x01
#define MODE_TX_7X 0x03
#define MODE_RX_CONTINUOUS_7X 0x05
#define MODE_RX_SINGLE_7X 0x06
// PA config
#define PA_BOOST_7X 0x80
// IRQ masks
#define IRQ_TX_DONE_MASK_7X 0x08
#define IRQ_RX_DONE_MASK_7X 0x40
#define IRQ_PAYLOAD_CRC_ERROR_MASK_7X 0x20
#define SYNC_WORD_7X 0x12
sx127x::sx127x(uint8_t index, SPIClass spi, int ss, int sclk, int mosi, int miso, int reset, int dio0, int busy) :
RadioInterface(index),
_spiSettings(8E6, MSBFIRST, SPI_MODE0),
_spiModem(spi),
_ss(ss), _sclk(sclk), _mosi(mosi), _miso(miso), _reset(reset), _dio0(dio0),
_busy(busy), _frequency(0), _packetIndex(0), _preinit_done(false)
{
setTimeout(0);
// TODO, figure out why this has to be done. Using the index to reference the
// interface_obj list causes a crash otherwise
_index = getIndex();
}
void sx127x::setSPIFrequency(uint32_t frequency) { _spiSettings = SPISettings(frequency, MSBFIRST, SPI_MODE0); }
uint8_t ISR_VECT sx127x::readRegister(uint8_t address) { return singleTransfer(address & 0x7f, 0x00); }
void sx127x::writeRegister(uint8_t address, uint8_t value) { singleTransfer(address | 0x80, value); }
void sx127x::standby() { writeRegister(REG_OP_MODE_7X, MODE_LONG_RANGE_MODE_7X | MODE_STDBY_7X); }
void sx127x::sleep() { writeRegister(REG_OP_MODE_7X, MODE_LONG_RANGE_MODE_7X | MODE_SLEEP_7X); }
uint8_t sx127x::modemStatus() { return readRegister(REG_MODEM_STAT_7X); }
void sx127x::setSyncWord(uint8_t sw) { writeRegister(REG_SYNC_WORD_7X, sw); }
void sx127x::enableCrc() { writeRegister(REG_MODEM_CONFIG_2_7X, readRegister(REG_MODEM_CONFIG_2_7X) | 0x04); }
void sx127x::disableCrc() { writeRegister(REG_MODEM_CONFIG_2_7X, readRegister(REG_MODEM_CONFIG_2_7X) & 0xfb); }
void sx127x::enableTCXO() { uint8_t tcxo_reg = readRegister(REG_TCXO_7X); writeRegister(REG_TCXO_7X, tcxo_reg | 0x10); }
void sx127x::disableTCXO() { uint8_t tcxo_reg = readRegister(REG_TCXO_7X); writeRegister(REG_TCXO_7X, tcxo_reg & 0xEF); }
void sx127x::explicitHeaderMode() { _implicitHeaderMode = 0; writeRegister(REG_MODEM_CONFIG_1_7X, readRegister(REG_MODEM_CONFIG_1_7X) & 0xfe); }
void sx127x::implicitHeaderMode() { _implicitHeaderMode = 1; writeRegister(REG_MODEM_CONFIG_1_7X, readRegister(REG_MODEM_CONFIG_1_7X) | 0x01); }
byte sx127x::random() { return readRegister(REG_RSSI_WIDEBAND_7X); }
void sx127x::flush() { }
bool sx127x::preInit() {
pinMode(_ss, OUTPUT);
digitalWrite(_ss, HIGH);
// todo: check if this change causes issues on any platforms
#if MCU_VARIANT == MCU_ESP32
if (_sclk != -1 && _miso != -1 && _mosi != -1 && _ss != -1) {
_spiModem.begin(_sclk, _miso, _mosi, _ss);
} else {
_spiModem.begin();
}
#else
_spiModem.begin();
#endif
// Check modem version
uint8_t version;
long start = millis();
while (((millis() - start) < 500) && (millis() >= start)) {
version = readRegister(REG_VERSION_7X);
if (version == 0x12) { break; }
delay(100);
}
if (version != 0x12) { return false; }
_preinit_done = true;
return true;
}
uint8_t ISR_VECT sx127x::singleTransfer(uint8_t address, uint8_t value) {
uint8_t response;
digitalWrite(_ss, LOW);
_spiModem.beginTransaction(_spiSettings);
_spiModem.transfer(address);
response = _spiModem.transfer(value);
_spiModem.endTransaction();
digitalWrite(_ss, HIGH);
return response;
}
int sx127x::begin() {
if (_reset != -1) {
pinMode(_reset, OUTPUT);
// Perform reset
digitalWrite(_reset, LOW);
delay(10);
digitalWrite(_reset, HIGH);
delay(10);
}
if (_busy != -1) { pinMode(_busy, INPUT); }
if (!_preinit_done) {
if (!preInit()) { return false; }
}
sleep();
setFrequency(_frequency);
// set base addresses
writeRegister(REG_FIFO_TX_BASE_ADDR_7X, 0);
writeRegister(REG_FIFO_RX_BASE_ADDR_7X, 0);
// set LNA boost and auto AGC
writeRegister(REG_LNA_7X, readRegister(REG_LNA_7X) | 0x03);
writeRegister(REG_MODEM_CONFIG_3_7X, 0x04);
setSyncWord(SYNC_WORD_7X);
enableCrc();
setTxPower(2);
standby();
_radio_online = true;
return 1;
}
void sx127x::end() {
sleep();
_spiModem.end();
_bitrate = 0;
_radio_online = false;
_preinit_done = false;
}
int sx127x::beginPacket(int implicitHeader) {
standby();
if (implicitHeader) {
implicitHeaderMode();
} else {
explicitHeaderMode();
}
// Reset FIFO address and payload length
writeRegister(REG_FIFO_ADDR_PTR_7X, 0);
writeRegister(REG_PAYLOAD_LENGTH_7X, 0);
return 1;
}
int sx127x::endPacket() {
// Enter TX mode
writeRegister(REG_OP_MODE_7X, MODE_LONG_RANGE_MODE_7X | MODE_TX_7X);
// Wait for TX completion
while ((readRegister(REG_IRQ_FLAGS_7X) & IRQ_TX_DONE_MASK_7X) == 0) {
yield();
}
// Clear TX complete IRQ
writeRegister(REG_IRQ_FLAGS_7X, IRQ_TX_DONE_MASK_7X);
return 1;
}
uint8_t sx127x::currentRssiRaw() {
uint8_t rssi = readRegister(REG_RSSI_VALUE_7X);
return rssi;
}
int ISR_VECT sx127x::currentRssi() {
int rssi = (int)readRegister(REG_RSSI_VALUE_7X) - RSSI_OFFSET;
if (_frequency < 820E6) rssi -= 7;
return rssi;
}
uint8_t sx127x::packetRssiRaw() {
uint8_t pkt_rssi_value = readRegister(REG_PKT_RSSI_VALUE_7X);
return pkt_rssi_value;
}
int ISR_VECT sx127x::packetRssi() {
int pkt_rssi = (int)readRegister(REG_PKT_RSSI_VALUE_7X) - RSSI_OFFSET;
int pkt_snr = packetSnr();
if (_frequency < 820E6) pkt_rssi -= 7;
if (pkt_snr < 0) {
pkt_rssi += pkt_snr;
} else {
// Slope correction is (16/15)*pkt_rssi,
// this estimation looses one floating point
// operation, and should be precise enough.
pkt_rssi = (int)(1.066 * pkt_rssi);
}
return pkt_rssi;
}
uint8_t ISR_VECT sx127x::packetSnrRaw() {
return readRegister(REG_PKT_SNR_VALUE_7X);
}
float ISR_VECT sx127x::packetSnr() {
return ((int8_t)readRegister(REG_PKT_SNR_VALUE_7X)) * 0.25;
}
long sx127x::packetFrequencyError() {
int32_t freqError = 0;
freqError = static_cast<int32_t>(readRegister(REG_FREQ_ERROR_MSB_7X) & B111);
freqError <<= 8L;
freqError += static_cast<int32_t>(readRegister(REG_FREQ_ERROR_MID_7X));
freqError <<= 8L;
freqError += static_cast<int32_t>(readRegister(REG_FREQ_ERROR_LSB_7X));
if (readRegister(REG_FREQ_ERROR_MSB_7X) & B1000) { // Sign bit is on
freqError -= 524288; // B1000'0000'0000'0000'0000
}
const float fXtal = 32E6; // FXOSC: crystal oscillator (XTAL) frequency (2.5. Chip Specification, p. 14)
const float fError = ((static_cast<float>(freqError) * (1L << 24)) / fXtal) * (getSignalBandwidth() / 500000.0f);
return static_cast<long>(fError);
}
size_t sx127x::write(uint8_t byte) { return write(&byte, sizeof(byte)); }
size_t sx127x::write(const uint8_t *buffer, size_t size) {
int currentLength = readRegister(REG_PAYLOAD_LENGTH_7X);
if ((currentLength + size) > MAX_PKT_LENGTH) {
size = MAX_PKT_LENGTH - currentLength;
}
for (size_t i = 0; i < size; i++) {
writeRegister(REG_FIFO_7X, buffer[i]);
}
writeRegister(REG_PAYLOAD_LENGTH_7X, currentLength + size);
return size;
}
int ISR_VECT sx127x::available() { return (readRegister(REG_RX_NB_BYTES_7X) - _packetIndex); }
int ISR_VECT sx127x::read() {
if (!available()) { return -1; }
_packetIndex++;
return readRegister(REG_FIFO_7X);
}
int sx127x::peek() {
if (!available()) { return -1; }
// Remember current FIFO address, read, and then reset address
int currentAddress = readRegister(REG_FIFO_ADDR_PTR_7X);
uint8_t b = readRegister(REG_FIFO_7X);
writeRegister(REG_FIFO_ADDR_PTR_7X, currentAddress);
return b;
}
void sx127x::onReceive(void(*callback)(uint8_t, int)) {
_onReceive = callback;
if (callback) {
pinMode(_dio0, INPUT);
writeRegister(REG_DIO_MAPPING_1_7X, 0x00);
#ifdef SPI_HAS_NOTUSINGINTERRUPT
_spiModem.usingInterrupt(digitalPinToInterrupt(_dio0));
#endif
// make function available
extern void onDio0Rise();
attachInterrupt(digitalPinToInterrupt(_dio0), onDio0Rise, RISING);
} else {
detachInterrupt(digitalPinToInterrupt(_dio0));
#ifdef SPI_HAS_NOTUSINGINTERRUPT
_spiModem.notUsingInterrupt(digitalPinToInterrupt(_dio0));
#endif
}
}
void sx127x::receive(int size) {
if (size > 0) {
implicitHeaderMode();
writeRegister(REG_PAYLOAD_LENGTH_7X, size & 0xff);
} else { explicitHeaderMode(); }
writeRegister(REG_OP_MODE_7X, MODE_LONG_RANGE_MODE_7X | MODE_RX_CONTINUOUS_7X);
}
void sx127x::setTxPower(int level, int outputPin) {
// Setup according to RFO or PA_BOOST output pin
if (PA_OUTPUT_RFO_PIN == outputPin) {
if (level < 0) { level = 0; }
else if (level > 14) { level = 14; }
writeRegister(REG_PA_DAC_7X, 0x84);
writeRegister(REG_PA_CONFIG_7X, 0x70 | level);
} else {
if (level < 2) { level = 2; }
else if (level > 17) { level = 17; }
writeRegister(REG_PA_DAC_7X, 0x84);
writeRegister(REG_PA_CONFIG_7X, PA_BOOST_7X | (level - 2));
}
}
uint8_t sx127x::getTxPower() { byte txp = readRegister(REG_PA_CONFIG_7X); return txp; }
void sx127x::setFrequency(uint32_t frequency) {
_frequency = frequency;
uint32_t frf = ((uint64_t)frequency << 19) / 32000000;
writeRegister(REG_FRF_MSB_7X, (uint8_t)(frf >> 16));
writeRegister(REG_FRF_MID_7X, (uint8_t)(frf >> 8));
writeRegister(REG_FRF_LSB_7X, (uint8_t)(frf >> 0));
optimizeModemSensitivity();
}
uint32_t sx127x::getFrequency() {
uint8_t msb = readRegister(REG_FRF_MSB_7X);
uint8_t mid = readRegister(REG_FRF_MID_7X);
uint8_t lsb = readRegister(REG_FRF_LSB_7X);
uint32_t frf = ((uint32_t)msb << 16) | ((uint32_t)mid << 8) | (uint32_t)lsb;
uint64_t frm = (uint64_t)frf*32000000;
uint32_t frequency = (frm >> 19);
return frequency;
}
void sx127x::setSpreadingFactor(int sf) {
if (sf < 6) { sf = 6; }
else if (sf > 12) { sf = 12; }
if (sf == 6) {
writeRegister(REG_DETECTION_OPTIMIZE_7X, 0xc5);
writeRegister(REG_DETECTION_THRESHOLD_7X, 0x0c);
} else {
writeRegister(REG_DETECTION_OPTIMIZE_7X, 0xc3);
writeRegister(REG_DETECTION_THRESHOLD_7X, 0x0a);
}
_sf = sf;
writeRegister(REG_MODEM_CONFIG_2_7X, (readRegister(REG_MODEM_CONFIG_2_7X) & 0x0f) | ((sf << 4) & 0xf0));
handleLowDataRate();
}
uint8_t sx127x::getSpreadingFactor()
{
return _sf;
}
uint32_t sx127x::getSignalBandwidth() {
byte bw = (readRegister(REG_MODEM_CONFIG_1_7X) >> 4);
switch (bw) {
case 0: return 7.8E3;
case 1: return 10.4E3;
case 2: return 15.6E3;
case 3: return 20.8E3;
case 4: return 31.25E3;
case 5: return 41.7E3;
case 6: return 62.5E3;
case 7: return 125E3;
case 8: return 250E3;
case 9: return 500E3; }
return 0;
}
void sx127x::setSignalBandwidth(uint32_t sbw) {
int bw;
if (sbw <= 7.8E3) {
bw = 0;
} else if (sbw <= 10.4E3) {
bw = 1;
} else if (sbw <= 15.6E3) {
bw = 2;
} else if (sbw <= 20.8E3) {
bw = 3;
} else if (sbw <= 31.25E3) {
bw = 4;
} else if (sbw <= 41.7E3) {
bw = 5;
} else if (sbw <= 62.5E3) {
bw = 6;
} else if (sbw <= 125E3) {
bw = 7;
} else if (sbw <= 250E3) {
bw = 8;
} else /*if (sbw <= 250E3)*/ {
bw = 9;
}
writeRegister(REG_MODEM_CONFIG_1_7X, (readRegister(REG_MODEM_CONFIG_1_7X) & 0x0f) | (bw << 4));
handleLowDataRate();
optimizeModemSensitivity();
}
void sx127x::setCodingRate4(int denominator) {
if (denominator < 5) { denominator = 5; }
else if (denominator > 8) { denominator = 8; }
int cr = denominator - 4;
_cr = cr;
writeRegister(REG_MODEM_CONFIG_1_7X, (readRegister(REG_MODEM_CONFIG_1_7X) & 0xf1) | (cr << 1));
}
uint8_t sx127x::getCodingRate4()
{
return _cr + 4;
}
void sx127x::setPreambleLength(long length) {
_preambleLength = length;
writeRegister(REG_PREAMBLE_MSB_7X, (uint8_t)(length >> 8));
writeRegister(REG_PREAMBLE_LSB_7X, (uint8_t)(length >> 0));
}
void sx127x::handleLowDataRate() {
int sf = (readRegister(REG_MODEM_CONFIG_2_7X) >> 4);
if ( long( (1<<sf) / (getSignalBandwidth()/1000)) > 16) {
// Set auto AGC and LowDataRateOptimize
writeRegister(REG_MODEM_CONFIG_3_7X, (1<<3)|(1<<2));
} else {
// Only set auto AGC
writeRegister(REG_MODEM_CONFIG_3_7X, (1<<2));
}
}
void sx127x::optimizeModemSensitivity() {
byte bw = (readRegister(REG_MODEM_CONFIG_1_7X) >> 4);
uint32_t freq = getFrequency();
if (bw == 9 && (410E6 <= freq) && (freq <= 525E6)) {
writeRegister(REG_HIGH_BW_OPTIMIZE_1_7X, 0x02);
writeRegister(REG_HIGH_BW_OPTIMIZE_2_7X, 0x7f);
} else if (bw == 9 && (820E6 <= freq) && (freq <= 1020E6)) {
writeRegister(REG_HIGH_BW_OPTIMIZE_1_7X, 0x02);
writeRegister(REG_HIGH_BW_OPTIMIZE_2_7X, 0x64);
} else {
writeRegister(REG_HIGH_BW_OPTIMIZE_1_7X, 0x03);
}
}
void ISR_VECT sx127x::handleDio0Rise() {
int irqFlags = readRegister(REG_IRQ_FLAGS_7X);
// Clear IRQs
writeRegister(REG_IRQ_FLAGS_7X, irqFlags);
if ((irqFlags & IRQ_PAYLOAD_CRC_ERROR_MASK_7X) == 0) {
_packetIndex = 0;
int packetLength = _implicitHeaderMode ? readRegister(REG_PAYLOAD_LENGTH_7X) : readRegister(REG_RX_NB_BYTES_7X);
writeRegister(REG_FIFO_ADDR_PTR_7X, readRegister(REG_FIFO_RX_CURRENT_ADDR_7X));
if (_onReceive) {
_onReceive(_index, packetLength);
}
writeRegister(REG_FIFO_ADDR_PTR_7X, 0);
}
}
void sx127x::updateBitrate() {
if (_radio_online) {
_lora_symbol_rate = (float)getSignalBandwidth()/(float)(pow(2, _sf));
_lora_symbol_time_ms = (1.0/_lora_symbol_rate)*1000.0;
_bitrate = (uint32_t)(_sf * ( (4.0/(float)(_cr+4)) / ((float)(pow(2, _sf))/((float)getSignalBandwidth()/1000.0)) ) * 1000.0);
_lora_us_per_byte = 1000000.0/((float)_bitrate/8.0);
//_csma_slot_ms = _lora_symbol_time_ms*10;
float target_preamble_symbols = (LORA_PREAMBLE_TARGET_MS/_lora_symbol_time_ms)-LORA_PREAMBLE_SYMBOLS_HW;
if (target_preamble_symbols < LORA_PREAMBLE_SYMBOLS_MIN) {
target_preamble_symbols = LORA_PREAMBLE_SYMBOLS_MIN;
} else {
target_preamble_symbols = ceil(target_preamble_symbols);
}
_preambleLength = (long)target_preamble_symbols;
} else {
_bitrate = 0;
}
}
// SX128x registers
#define OP_RF_FREQ_8X 0x86
#define OP_SLEEP_8X 0x84
#define OP_STANDBY_8X 0x80
#define OP_TX_8X 0x83
#define OP_RX_8X 0x82
#define OP_SET_IRQ_FLAGS_8X 0x8D // also provides info such as
// preamble detection, etc for
// knowing when it's safe to switch
// antenna modes
#define OP_CLEAR_IRQ_STATUS_8X 0x97
#define OP_GET_IRQ_STATUS_8X 0x15
#define OP_RX_BUFFER_STATUS_8X 0x17
#define OP_PACKET_STATUS_8X 0x1D // get snr & rssi of last packet
#define OP_CURRENT_RSSI_8X 0x1F
#define OP_MODULATION_PARAMS_8X 0x8B // bw, sf, cr, etc.
#define OP_PACKET_PARAMS_8X 0x8C // crc, preamble, payload length, etc.
#define OP_STATUS_8X 0xC0
#define OP_TX_PARAMS_8X 0x8E // set dbm, etc
#define OP_PACKET_TYPE_8X 0x8A
#define OP_BUFFER_BASE_ADDR_8X 0x8F
#define OP_READ_REGISTER_8X 0x19
#define OP_WRITE_REGISTER_8X 0x18
#define IRQ_TX_DONE_MASK_8X 0x01
#define IRQ_RX_DONE_MASK_8X 0x02
#define IRQ_HEADER_DET_MASK_8X 0x10
#define IRQ_HEADER_ERROR_MASK_8X 0x20
#define IRQ_PAYLOAD_CRC_ERROR_MASK_8X 0x40
#define MODE_LONG_RANGE_MODE_8X 0x01
#define OP_FIFO_WRITE_8X 0x1A
#define OP_FIFO_READ_8X 0x1B
#define IRQ_PREAMBLE_DET_MASK_8X 0x80
#define REG_PACKET_SIZE 0x901
#define REG_FIRM_VER_MSB 0x154
#define REG_FIRM_VER_LSB 0x153
#define XTAL_FREQ_8X (double)52000000
#define FREQ_DIV_8X (double)pow(2.0, 18.0)
#define FREQ_STEP_8X (double)(XTAL_FREQ_8X / FREQ_DIV_8X)
sx128x::sx128x(uint8_t index, SPIClass spi, bool tcxo, int ss, int sclk, int mosi, int miso, int reset, int dio0, int busy, int rxen, int txen) :
RadioInterface(index),
_spiSettings(8E6, MSBFIRST, SPI_MODE0),
_spiModem(spi),
_ss(ss), _sclk(sclk), _mosi(mosi), _miso(miso), _reset(reset), _dio0(dio0),
_busy(busy), _rxen(rxen), _txen(txen), _frequency(0), _txp(0), _sf(0x50),
_bw(0x34), _cr(0x01), _packetIndex(0), _implicitHeaderMode(0),
_payloadLength(255), _crcMode(0), _fifo_tx_addr_ptr(0), _fifo_rx_addr_ptr(0),
_packet({0}), _rxPacketLength(0), _preinit_done(false),
_tcxo(tcxo)
{
// overide Stream timeout value
setTimeout(0);
// TODO, figure out why this has to be done. Using the index to reference the
// interface_obj list causes a crash otherwise
_index = getIndex();
}
bool sx128x::preInit() {
// setup pins
pinMode(_ss, OUTPUT);
// set SS high
digitalWrite(_ss, HIGH);
// todo: check if this change causes issues on any platforms
#if MCU_VARIANT == MCU_ESP32
if (_sclk != -1 && _miso != -1 && _mosi != -1 && _ss != -1) {
_spiModem.begin(_sclk, _miso, _mosi, _ss);
} else {
_spiModem.begin();
}
#else
_spiModem.begin();
#endif
// check version (retry for up to 2 seconds)
long start = millis();
uint8_t version_msb;
uint8_t version_lsb;
while (((millis() - start) < 2000) && (millis() >= start)) {
version_msb = readRegister(REG_FIRM_VER_MSB);
version_lsb = readRegister(REG_FIRM_VER_LSB);
if ((version_msb == 0xB7 && version_lsb == 0xA9) || (version_msb == 0xB5 && version_lsb == 0xA9)) {
break;
}
delay(100);
}
if ((version_msb != 0xB7 || version_lsb != 0xA9) && (version_msb != 0xB5 || version_lsb != 0xA9)) {
return false;
}
_preinit_done = true;
return true;
}
uint8_t ISR_VECT sx128x::readRegister(uint16_t address)
{
return singleTransfer(OP_READ_REGISTER_8X, address, 0x00);
}
void sx128x::writeRegister(uint16_t address, uint8_t value)
{
singleTransfer(OP_WRITE_REGISTER_8X, address, value);
}
uint8_t ISR_VECT sx128x::singleTransfer(uint8_t opcode, uint16_t address, uint8_t value)
{
waitOnBusy();
uint8_t response;
digitalWrite(_ss, LOW);
_spiModem.beginTransaction(_spiSettings);
_spiModem.transfer(opcode);
_spiModem.transfer((address & 0xFF00) >> 8);
_spiModem.transfer(address & 0x00FF);
if (opcode == OP_READ_REGISTER_8X) {
_spiModem.transfer(0x00);
}
response = _spiModem.transfer(value);
_spiModem.endTransaction();
digitalWrite(_ss, HIGH);
return response;
}
void sx128x::rxAntEnable()
{
if (_txen != -1) {
digitalWrite(_txen, LOW);
}
if (_rxen != -1) {
digitalWrite(_rxen, HIGH);
}
}
void sx128x::txAntEnable()
{
if (_txen != -1) {
digitalWrite(_txen, HIGH);
}
if (_rxen != -1) {
digitalWrite(_rxen, LOW);
}
}
void sx128x::loraMode() {
// enable lora mode on the SX1262 chip
uint8_t mode = MODE_LONG_RANGE_MODE_8X;
executeOpcode(OP_PACKET_TYPE_8X, &mode, 1);
}
void sx128x::waitOnBusy() {
unsigned long time = millis();
while (digitalRead(_busy) == HIGH)
{
if (millis() >= (time + 100)) {
break;
}
// do nothing
}
}
void sx128x::executeOpcode(uint8_t opcode, uint8_t *buffer, uint8_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
_spiModem.beginTransaction(_spiSettings);
_spiModem.transfer(opcode);
for (int i = 0; i < size; i++)
{
_spiModem.transfer(buffer[i]);
}
_spiModem.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx128x::executeOpcodeRead(uint8_t opcode, uint8_t *buffer, uint8_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
_spiModem.beginTransaction(_spiSettings);
_spiModem.transfer(opcode);
_spiModem.transfer(0x00);
for (int i = 0; i < size; i++)
{
buffer[i] = _spiModem.transfer(0x00);
}
_spiModem.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx128x::writeBuffer(const uint8_t* buffer, size_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
_spiModem.beginTransaction(_spiSettings);
_spiModem.transfer(OP_FIFO_WRITE_8X);
_spiModem.transfer(_fifo_tx_addr_ptr);
for (int i = 0; i < size; i++)
{
_spiModem.transfer(buffer[i]);
_fifo_tx_addr_ptr++;
}
_spiModem.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx128x::readBuffer(uint8_t* buffer, size_t size)
{
waitOnBusy();
digitalWrite(_ss, LOW);
_spiModem.beginTransaction(_spiSettings);
_spiModem.transfer(OP_FIFO_READ_8X);
_spiModem.transfer(_fifo_rx_addr_ptr);
_spiModem.transfer(0x00);
for (int i = 0; i < size; i++)
{
buffer[i] = _spiModem.transfer(0x00);
}
_spiModem.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx128x::setModulationParams(uint8_t sf, uint8_t bw, uint8_t cr) {
// because there is no access to these registers on the sx1280, we have
// to set all these parameters at once or not at all.
uint8_t buf[3];
buf[0] = sf << 4;
buf[1] = bw;
buf[2] = cr;
executeOpcode(OP_MODULATION_PARAMS_8X, buf, 3);
if (sf <= 6) {
writeRegister(0x925, 0x1E);
} else if (sf <= 8) {
writeRegister(0x925, 0x37);
} else if (sf >= 9) {
writeRegister(0x925, 0x32);
}
writeRegister(0x093C, 0x1);
}
void sx128x::setPacketParams(uint32_t preamble, uint8_t headermode, uint8_t length, uint8_t crc) {
// because there is no access to these registers on the sx1280, we have
// to set all these parameters at once or not at all.
uint8_t buf[7];
// calculate exponent and mantissa values for modem
uint8_t e = 1;
uint8_t m = 1;
uint32_t preamblelen;
while (e <= 15) {
while (m <= 15) {
preamblelen = m * (pow(2,e));
if (preamblelen >= preamble) break;
m++;
}
if (preamblelen >= preamble) break;
m = 0;
e++;
}
buf[0] = (e << 4) | m;
buf[1] = headermode;
buf[2] = length;
buf[3] = crc;
// standard IQ setting (no inversion)
buf[4] = 0x40;
// unused params
buf[5] = 0x00;
buf[6] = 0x00;
executeOpcode(OP_PACKET_PARAMS_8X, buf, 7);
}
int sx128x::begin()
{
if (_reset != -1) {
pinMode(_reset, OUTPUT);
// perform reset
digitalWrite(_reset, LOW);
delay(10);
digitalWrite(_reset, HIGH);
delay(10);
}
if (_rxen != -1) {
pinMode(_rxen, OUTPUT);
}
if (_txen != -1) {
pinMode(_txen, OUTPUT);
}
if (_busy != -1) {
pinMode(_busy, INPUT);
}
if (!_preinit_done) {
if (!preInit()) {
return false;
}
}
standby();
loraMode();
rxAntEnable();
setFrequency(_frequency);
// set LNA boost
// todo: implement this
//writeRegister(REG_LNA, 0x96);
setModulationParams(_sf, _bw, _cr);
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
setTxPower(_txp);
// set base addresses
uint8_t basebuf[2] = {0};
executeOpcode(OP_BUFFER_BASE_ADDR_8X, basebuf, 2);
_radio_online = true;
return 1;
}
void sx128x::end()
{
// put in sleep mode
sleep();
// stop SPI
_spiModem.end();
_bitrate = 0;
_radio_online = false;
_preinit_done = false;
}
int sx128x::beginPacket(int implicitHeader)
{
// put in standby mode
standby();
if (implicitHeader) {
implicitHeaderMode();
} else {
explicitHeaderMode();
}
_payloadLength = 0;
_fifo_tx_addr_ptr = 0;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
return 1;
}
int sx128x::endPacket()
{
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
txAntEnable();
// put in single TX mode
uint8_t timeout[3] = {0};
executeOpcode(OP_TX_8X, timeout, 3);
uint8_t buf[2];
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2);
// wait for TX done
while ((buf[1] & IRQ_TX_DONE_MASK_8X) == 0) {
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2);
yield();
}
// clear IRQ's
uint8_t mask[2];
mask[0] = 0x00;
mask[1] = IRQ_TX_DONE_MASK_8X;
executeOpcode(OP_CLEAR_IRQ_STATUS_8X, mask, 2);
return 1;
}
uint8_t sx128x::modemStatus() {
// imitate the register status from the sx1276 / 78
uint8_t buf[2] = {0};
executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2);
uint8_t clearbuf[2] = {0};
uint8_t byte = 0x00;
if ((buf[0] & IRQ_PREAMBLE_DET_MASK_8X) != 0) {
byte = byte | 0x01 | 0x04;
// clear register after reading
clearbuf[0] = IRQ_PREAMBLE_DET_MASK_8X;
}
if ((buf[1] & IRQ_HEADER_DET_MASK_8X) != 0) {
byte = byte | 0x02 | 0x04;
}
executeOpcode(OP_CLEAR_IRQ_STATUS_8X, clearbuf, 2);
return byte;
}
uint8_t sx128x::currentRssiRaw() {
uint8_t byte = 0;
executeOpcodeRead(OP_CURRENT_RSSI_8X, &byte, 1);
return byte;
}
int ISR_VECT sx128x::currentRssi() {
uint8_t byte = 0;
executeOpcodeRead(OP_CURRENT_RSSI_8X, &byte, 1);
int rssi = -byte / 2;
return rssi;
}
uint8_t sx128x::packetRssiRaw() {
uint8_t buf[5] = {0};
executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 5);
return buf[0];
}
int ISR_VECT sx128x::packetRssi() {
// may need more calculations here
uint8_t buf[5] = {0};
executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 5);
int pkt_rssi = -buf[0] / 2;
return pkt_rssi;
}
uint8_t ISR_VECT sx128x::packetSnrRaw() {
uint8_t buf[5] = {0};
executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 5);
return buf[1];
}
float ISR_VECT sx128x::packetSnr() {
uint8_t buf[5] = {0};
executeOpcodeRead(OP_PACKET_STATUS_8X, buf, 3);
return float(buf[1]) * 0.25;
}
long sx128x::packetFrequencyError()
{
int32_t freqError = 0;
// todo: implement this, page 120 of sx1280 datasheet
const float fError = 0.0;
return static_cast<long>(fError);
}
size_t sx128x::write(uint8_t byte)
{
return write(&byte, sizeof(byte));
}
size_t sx128x::write(const uint8_t *buffer, size_t size)
{
if ((_payloadLength + size) > MAX_PKT_LENGTH) {
size = MAX_PKT_LENGTH - _payloadLength;
}
// write data
writeBuffer(buffer, size);
_payloadLength = _payloadLength + size;
return size;
}
int ISR_VECT sx128x::available()
{
return _rxPacketLength - _packetIndex;
}
int ISR_VECT sx128x::read()
{
if (!available()) {
return -1;
}
uint8_t byte = _packet[_packetIndex];
_packetIndex++;
return byte;
}
int sx128x::peek()
{
if (!available()) {
return -1;
}
uint8_t b = _packet[_packetIndex];
return b;
}
void sx128x::flush()
{
}
void sx128x::onReceive(void(*callback)(uint8_t, int))
{
_onReceive = callback;
if (callback) {
pinMode(_dio0, INPUT);
// set preamble and header detection irqs, plus dio0 mask
uint8_t buf[8];
// set irq masks, enable all
buf[0] = 0xFF;
buf[1] = 0xFF;
// set dio0 masks
buf[2] = 0x00;
buf[3] = IRQ_RX_DONE_MASK_8X;
// set dio1 masks
buf[4] = 0x00;
buf[5] = 0x00;
// set dio2 masks
buf[6] = 0x00;
buf[7] = 0x00;
executeOpcode(OP_SET_IRQ_FLAGS_8X, buf, 8);
//#ifdef SPI_HAS_NOTUSINGINTERRUPT
// _spiModem.usingInterrupt(digitalPinToInterrupt(_dio0));
//#endif
// make function available
extern void onDio0Rise();
attachInterrupt(digitalPinToInterrupt(_dio0), onDio0Rise, RISING);
} else {
detachInterrupt(digitalPinToInterrupt(_dio0));
//#ifdef SPI_HAS_NOTUSINGINTERRUPT
// _spiModem.notUsingInterrupt(digitalPinToInterrupt(_dio0));
//#endif
}
}
void sx128x::receive(int size)
{
if (size > 0) {
implicitHeaderMode();
// tell radio payload length
_rxPacketLength = size;
//_payloadLength = size;
//setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
} else {
explicitHeaderMode();
}
rxAntEnable();
uint8_t mode[3] = {0xFF, 0xFF, 0xFF}; // continuous mode
executeOpcode(OP_RX_8X, mode, 3);
}
void sx128x::standby()
{
uint8_t byte;
if (_tcxo) {
// STDBY_XOSC
byte = 0x01;
} else {
// STDBY_RC
byte = 0x00;
}
executeOpcode(OP_STANDBY_8X, &byte, 1);
}
void sx128x::sleep()
{
uint8_t byte = 0x00;
executeOpcode(OP_SLEEP_8X, &byte, 1);
}
void sx128x::enableTCXO() {
// todo: need to check how to implement on sx1280
}
void sx128x::disableTCXO() {
// todo: need to check how to implement on sx1280
}
void sx128x::setTxPower(int level, int outputPin) {
if (level > 13) {
level = 13;
} else if (level < -18) {
level = -18;
}
_txp = level;
level = level + 18;
uint8_t tx_buf[2];
tx_buf[0] = level;
tx_buf[1] = 0xE0; // ramping time - 20 microseconds
executeOpcode(OP_TX_PARAMS_8X, tx_buf, 2);
}
uint8_t sx128x::getTxPower() {
return _txp;
}
void sx128x::setFrequency(uint32_t frequency) {
_frequency = frequency;
uint8_t buf[3];
uint32_t freq = (uint32_t)((double)frequency / (double)FREQ_STEP_8X);
buf[0] = ((freq >> 16) & 0xFF);
buf[1] = ((freq >> 8) & 0xFF);
buf[2] = (freq & 0xFF);
executeOpcode(OP_RF_FREQ_8X, buf, 3);
}
uint32_t sx128x::getFrequency() {
// we can't read the frequency on the sx1280
uint32_t frequency = _frequency;
return frequency;
}
void sx128x::setSpreadingFactor(int sf)
{
if (sf < 5) {
sf = 5;
} else if (sf > 12) {
sf = 12;
}
_sf = sf;
setModulationParams(sf, _bw, _cr);
handleLowDataRate();
}
uint8_t sx128x::getSpreadingFactor()
{
return _sf;
}
uint32_t sx128x::getSignalBandwidth()
{
int bw = _bw;
switch (bw) {
case 0x34: return 203.125E3;
case 0x26: return 406.25E3;
case 0x18: return 812.5E3;
case 0x0A: return 1625E3;
}
return 0;
}
void sx128x::handleLowDataRate(){
// todo: do i need this??
}
void sx128x::optimizeModemSensitivity(){
// todo: check if there's anything the sx1280 can do here
}
void sx128x::setSignalBandwidth(uint32_t sbw)
{
if (sbw <= 203.125E3) {
_bw = 0x34;
} else if (sbw <= 406.25E3) {
_bw = 0x26;
} else if (sbw <= 812.5E3) {
_bw = 0x18;
} else {
_bw = 0x0A;
}
setModulationParams(_sf, _bw, _cr);
handleLowDataRate();
optimizeModemSensitivity();
}
void sx128x::setCodingRate4(int denominator)
{
if (denominator < 5) {
denominator = 5;
} else if (denominator > 8) {
denominator = 8;
}
_cr = denominator - 4;
// todo: add support for new interleaving scheme, see page 117 of sx1280
// datasheet
// update cr values for sx1280's use
setModulationParams(_sf, _bw, _cr);
}
uint8_t sx128x::getCodingRate4()
{
return _cr + 4;
}
void sx128x::setPreambleLength(long length)
{
_preambleLength = length;
setPacketParams(length, _implicitHeaderMode, _payloadLength, _crcMode);
}
void sx128x::setSyncWord(int sw)
{
// not implemented
}
void sx128x::enableCrc()
{
_crcMode = 0x20;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
void sx128x::disableCrc()
{
_crcMode = 0;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
byte sx128x::random()
{
// todo: implement
}
void sx128x::setSPIFrequency(uint32_t frequency)
{
_spiSettings = SPISettings(frequency, MSBFIRST, SPI_MODE0);
}
void sx128x::dumpRegisters(Stream& out)
{
for (int i = 0; i < 128; i++) {
out.print("0x");
out.print(i, HEX);
out.print(": 0x");
out.println(readRegister(i), HEX);
}
}
void sx128x::explicitHeaderMode()
{
_implicitHeaderMode = 0;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
void sx128x::implicitHeaderMode()
{
_implicitHeaderMode = 0x80;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
}
void ISR_VECT sx128x::handleDio0Rise()
{
uint8_t buf[2];
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_8X, buf, 2);
executeOpcode(OP_CLEAR_IRQ_STATUS_8X, buf, 2);
if ((buf[1] & IRQ_PAYLOAD_CRC_ERROR_MASK_8X) == 0) {
// received a packet
_packetIndex = 0;
uint8_t rxbuf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_8X, rxbuf, 2);
_rxPacketLength = rxbuf[0];
_fifo_rx_addr_ptr = rxbuf[1];
readBuffer(_packet, _rxPacketLength);
if (_onReceive) {
_onReceive(_index, _rxPacketLength);
}
}
}
void sx128x::updateBitrate() {
if (_radio_online) {
_lora_symbol_rate = (float)getSignalBandwidth()/(float)(pow(2, _sf));
_lora_symbol_time_ms = (1.0/_lora_symbol_rate)*1000.0;
_bitrate = (uint32_t)(_sf * ( (4.0/(float)(_cr+4)) / ((float)(pow(2, _sf))/((float)getSignalBandwidth()/1000.0)) ) * 1000.0);
_lora_us_per_byte = 1000000.0/((float)_bitrate/8.0);
//_csma_slot_ms = _lora_symbol_time_ms*10;
float target_preamble_symbols = (LORA_PREAMBLE_TARGET_MS/_lora_symbol_time_ms)-LORA_PREAMBLE_SYMBOLS_HW;
if (target_preamble_symbols < LORA_PREAMBLE_SYMBOLS_MIN) {
target_preamble_symbols = LORA_PREAMBLE_SYMBOLS_MIN;
} else {
target_preamble_symbols = ceil(target_preamble_symbols);
}
_preambleLength = (long)target_preamble_symbols;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
} else {
_bitrate = 0;
}
}