# include <SPI.h>
# include <LoRa.h>
# include "Config.h"
# include "Framing.h"
# include "Utilities.cpp"
void setup ( ) {
// Seed the PRNG
randomSeed ( analogRead ( 0 ) ) ;
// Initialise serial communication
Serial . begin ( serial_baudrate ) ;
while ( ! Serial ) ;
// Configure input and output pins
pinMode ( pin_led_rx , OUTPUT ) ;
pinMode ( pin_led_tx , OUTPUT ) ;
// Initialise buffers
memset ( pbuf , 0 , sizeof ( pbuf ) ) ;
memset ( sbuf , 0 , sizeof ( sbuf ) ) ;
memset ( cbuf , 0 , sizeof ( cbuf ) ) ;
# if QUEUE_SIZE > 0
memset ( qbuf , 0 , sizeof ( qbuf ) ) ;
memset ( queued_lengths , 0 , sizeof ( queued_lengths ) ) ;
# endif
// Set chip select, reset and interrupt
// pins for the LoRa module
LoRa . setPins ( pin_cs , pin_reset , pin_dio ) ;
// Validate board health, EEPROM and config
validateStatus ( ) ;
}
bool startRadio ( ) {
update_radio_lock ( ) ;
if ( ! radio_online ) {
if ( ! radio_locked & & hw_ready ) {
if ( ! LoRa . begin ( lora_freq ) ) {
// The radio could not be started.
// Indicate this failure over both the
// serial port and with the onboard LEDs
kiss_indicate_error ( ERROR_INITRADIO ) ;
led_indicate_error ( 0 ) ;
} else {
radio_online = true ;
setTXPower ( ) ;
setBandwidth ( ) ;
setSpreadingFactor ( ) ;
setCodingRate ( ) ;
getFrequency ( ) ;
LoRa . enableCrc ( ) ;
LoRa . onReceive ( receiveCallback ) ;
LoRa . receive ( ) ;
// Flash an info pattern to indicate
// that the radio is now on
led_indicate_info ( 3 ) ;
}
} else {
// Flash a warning pattern to indicate
// that the radio was locked, and thus
// not started
led_indicate_warning ( 3 ) ;
}
} else {
// If radio is already on, we silently
// ignore the request.
}
}
void stopRadio ( ) {
LoRa . end ( ) ;
radio_online = false ;
}
void update_radio_lock ( ) {
if ( lora_freq ! = 0 & & lora_bw ! = 0 & & lora_txp ! = 0xFF & & lora_sf ! = 0 ) {
radio_locked = false ;
} else {
radio_locked = true ;
}
}
void receiveCallback ( int packet_size ) {
if ( ! promisc ) {
// The standard operating mode allows large
// packets with a payload up to 500 bytes,
// by combining two raw LoRa packets.
// We read the 1-byte header and extract
// packet sequence number and split flags
uint8_t header = LoRa . read ( ) ; packet_size - - ;
uint8_t sequence = packetSequence ( header ) ;
bool ready = false ;
if ( isSplitPacket ( header ) & & seq = = SEQ_UNSET ) {
// This is the first part of a split
// packet, so we set the seq variable
// and add the data to the buffer
read_len = 0 ;
seq = sequence ;
last_rssi = LoRa . packetRssi ( ) ;
getPacketData ( packet_size ) ;
} else if ( isSplitPacket ( header ) & & seq = = sequence ) {
// This is the second part of a split
// packet, so we add it to the buffer
// and set the ready flag.
last_rssi = ( last_rssi + LoRa . packetRssi ( ) ) / 2 ;
getPacketData ( packet_size ) ;
seq = SEQ_UNSET ;
ready = true ;
} else if ( isSplitPacket ( header ) & & seq ! = sequence ) {
// This split packet does not carry the
// same sequence id, so we must assume
// that we are seeing the first part of
// a new split packet.
read_len = 0 ;
seq = sequence ;
last_rssi = LoRa . packetRssi ( ) ;
getPacketData ( packet_size ) ;
} else if ( ! isSplitPacket ( header ) ) {
// This is not a split packet, so we
// just read it and set the ready
// flag to true.
if ( seq ! = SEQ_UNSET ) {
// If we already had part of a split
// packet in the buffer, we clear it.
read_len = 0 ;
seq = SEQ_UNSET ;
}
last_rssi = LoRa . packetRssi ( ) ;
getPacketData ( packet_size ) ;
ready = true ;
}
if ( ready ) {
// We first signal the RSSI of the
// recieved packet to the host.
Serial . write ( FEND ) ;
Serial . write ( CMD_STAT_RSSI ) ;
Serial . write ( ( uint8_t ) ( last_rssi - rssi_offset ) ) ;
Serial . write ( FEND ) ;
// And then write the entire packet
Serial . write ( FEND ) ;
Serial . write ( CMD_DATA ) ;
for ( int i = 0 ; i < read_len ; i + + ) {
uint8_t byte = pbuf [ i ] ;
if ( byte = = FEND ) { Serial . write ( FESC ) ; byte = TFEND ; }
if ( byte = = FESC ) { Serial . write ( FESC ) ; byte = TFESC ; }
Serial . write ( byte ) ;
}
Serial . write ( FEND ) ;
read_len = 0 ;
}
} else {
// In promiscuous mode, raw packets are
// output directly over to the host
read_len = 0 ;
last_rssi = LoRa . packetRssi ( ) ;
getPacketData ( packet_size ) ;
// We first signal the RSSI of the
// recieved packet to the host.
Serial . write ( FEND ) ;
Serial . write ( CMD_STAT_RSSI ) ;
Serial . write ( ( uint8_t ) ( last_rssi - rssi_offset ) ) ;
Serial . write ( FEND ) ;
// And then write the entire packet
Serial . write ( FEND ) ;
Serial . write ( CMD_DATA ) ;
for ( int i = 0 ; i < read_len ; i + + ) {
uint8_t byte = pbuf [ i ] ;
if ( byte = = FEND ) { Serial . write ( FESC ) ; byte = TFEND ; }
if ( byte = = FESC ) { Serial . write ( FESC ) ; byte = TFESC ; }
Serial . write ( byte ) ;
}
Serial . write ( FEND ) ;
read_len = 0 ;
}
}
bool outboundReady ( ) {
# if QUEUE_SIZE > 0
if ( queue_head ! = queue_tail ) {
return true ;
} else {
return false ;
}
# else
return outbound_ready ;
# endif
}
bool queueFull ( ) {
size_t new_queue_head = ( queue_head + 1 ) % QUEUE_BUF_SIZE ;
if ( new_queue_head = = queue_tail ) {
return true ;
} else {
return false ;
}
}
void enqueuePacket ( size_t length ) {
size_t new_queue_head = ( queue_head + 1 ) % QUEUE_BUF_SIZE ;
if ( new_queue_head ! = queue_tail ) {
queued_lengths [ queue_head ] = length ;
size_t insert_addr = queue_head * MTU ;
for ( int i = 0 ; i < length ; i + + ) {
qbuf [ insert_addr + i ] = sbuf [ i ] ;
}
queue_head = new_queue_head ;
if ( ! queueFull ( ) ) {
kiss_indicate_ready ( ) ;
}
} else {
kiss_indicate_error ( ERROR_QUEUE_FULL ) ;
}
}
# if QUEUE_SIZE > 0
void processQueue ( ) {
size_t fetch_address = queue_tail * MTU ;
size_t fetch_length = queued_lengths [ queue_tail ] ;
for ( int i = 0 ; i < fetch_length ; i + + ) {
tbuf [ i ] = qbuf [ fetch_address + i ] ;
qbuf [ fetch_address + i ] = 0x00 ;
}
queued_lengths [ queue_tail ] = 0 ;
queue_tail = + + queue_tail % QUEUE_BUF_SIZE ;
transmit ( fetch_length ) ;
if ( ! queueFull ( ) ) {
kiss_indicate_ready ( ) ;
}
}
# endif
void transmit ( size_t size ) {
if ( radio_online ) {
if ( ! promisc ) {
led_tx_on ( ) ;
size_t written = 0 ;
uint8_t header = random ( 256 ) & 0xF0 ;
if ( size > SINGLE_MTU - HEADER_L ) {
header = header | FLAG_SPLIT ;
}
LoRa . beginPacket ( ) ;
LoRa . write ( header ) ; written + + ;
for ( size_t i ; i < size ; i + + ) {
# if QUEUE_SIZE > 0
LoRa . write ( tbuf [ i ] ) ;
# else
LoRa . write ( sbuf [ i ] ) ;
# endif
written + + ;
if ( written = = 255 ) {
LoRa . endPacket ( ) ;
LoRa . beginPacket ( ) ;
LoRa . write ( header ) ;
written = 1 ;
}
}
LoRa . endPacket ( ) ;
led_tx_off ( ) ;
LoRa . receive ( ) ;
} else {
// In promiscuous mode, we only send out
// plain raw LoRa packets with a maximum
// payload of 255 bytes
led_tx_on ( ) ;
size_t written = 0 ;
// Cap packets at 255 bytes
if ( size > SINGLE_MTU ) {
size = SINGLE_MTU ;
}
LoRa . beginPacket ( ) ;
for ( size_t i ; i < size ; i + + ) {
# if QUEUE_SIZE > 0
LoRa . write ( tbuf [ i ] ) ;
# else
LoRa . write ( sbuf [ i ] ) ;
# endif
written + + ;
}
LoRa . endPacket ( ) ;
led_tx_off ( ) ;
LoRa . receive ( ) ;
}
} else {
kiss_indicate_error ( ERROR_TXFAILED ) ;
led_indicate_error ( 5 ) ;
}
# if QUEUE_SIZE == 0
if ( FLOW_CONTROL_ENABLED )
kiss_indicate_ready ( ) ;
# endif
}
void serialCallback ( uint8_t sbyte ) {
if ( IN_FRAME & & sbyte = = FEND & & command = = CMD_DATA ) {
IN_FRAME = false ;
if ( QUEUE_SIZE = = 0 ) {
if ( outbound_ready ) {
kiss_indicate_error ( ERROR_QUEUE_FULL ) ;
} else {
outbound_ready = true ;
}
} else {
enqueuePacket ( frame_len ) ;
}
} else if ( sbyte = = FEND ) {
IN_FRAME = true ;
command = CMD_UNKNOWN ;
frame_len = 0 ;
} else if ( IN_FRAME & & frame_len < MTU ) {
// Have a look at the command byte first
if ( frame_len = = 0 & & command = = CMD_UNKNOWN ) {
command = sbyte ;
} else if ( command = = CMD_DATA ) {
if ( sbyte = = FESC ) {
ESCAPE = true ;
} else {
if ( ESCAPE ) {
if ( sbyte = = TFEND ) sbyte = FEND ;
if ( sbyte = = TFESC ) sbyte = FESC ;
ESCAPE = false ;
}
sbuf [ frame_len + + ] = sbyte ;
}
} else if ( command = = CMD_FREQUENCY ) {
if ( sbyte = = FESC ) {
ESCAPE = true ;
} else {
if ( ESCAPE ) {
if ( sbyte = = TFEND ) sbyte = FEND ;
if ( sbyte = = TFESC ) sbyte = FESC ;
ESCAPE = false ;
}
cbuf [ frame_len + + ] = sbyte ;
}
if ( frame_len = = 4 ) {
uint32_t freq = ( uint32_t ) cbuf [ 0 ] < < 24 | ( uint32_t ) cbuf [ 1 ] < < 16 | ( uint32_t ) cbuf [ 2 ] < < 8 | ( uint32_t ) cbuf [ 3 ] ;
if ( freq = = 0 ) {
kiss_indicate_frequency ( ) ;
} else {
lora_freq = freq ;
if ( op_mode = = MODE_HOST ) setFrequency ( ) ;
kiss_indicate_frequency ( ) ;
}
}
} else if ( command = = CMD_BANDWIDTH ) {
if ( sbyte = = FESC ) {
ESCAPE = true ;
} else {
if ( ESCAPE ) {
if ( sbyte = = TFEND ) sbyte = FEND ;
if ( sbyte = = TFESC ) sbyte = FESC ;
ESCAPE = false ;
}
cbuf [ frame_len + + ] = sbyte ;
}
if ( frame_len = = 4 ) {
uint32_t bw = ( uint32_t ) cbuf [ 0 ] < < 24 | ( uint32_t ) cbuf [ 1 ] < < 16 | ( uint32_t ) cbuf [ 2 ] < < 8 | ( uint32_t ) cbuf [ 3 ] ;
if ( bw = = 0 ) {
kiss_indicate_bandwidth ( ) ;
} else {
lora_bw = bw ;
if ( op_mode = = MODE_HOST ) setBandwidth ( ) ;
kiss_indicate_bandwidth ( ) ;
}
}
} else if ( command = = CMD_TXPOWER ) {
if ( sbyte = = 0xFF ) {
kiss_indicate_txpower ( ) ;
} else {
int txp = sbyte ;
if ( txp > 17 ) txp = 17 ;
lora_txp = txp ;
if ( op_mode = = MODE_HOST ) setTXPower ( ) ;
kiss_indicate_txpower ( ) ;
}
} else if ( command = = CMD_SF ) {
if ( sbyte = = 0xFF ) {
kiss_indicate_spreadingfactor ( ) ;
} else {
int sf = sbyte ;
if ( sf < 6 ) sf = 6 ;
if ( sf > 12 ) sf = 12 ;
lora_sf = sf ;
if ( op_mode = = MODE_HOST ) setSpreadingFactor ( ) ;
kiss_indicate_spreadingfactor ( ) ;
}
} else if ( command = = CMD_CR ) {
if ( sbyte = = 0xFF ) {
kiss_indicate_codingrate ( ) ;
} else {
int cr = sbyte ;
if ( cr < 5 ) cr = 5 ;
if ( cr > 8 ) cr = 8 ;
lora_cr = cr ;
if ( op_mode = = MODE_HOST ) setCodingRate ( ) ;
kiss_indicate_codingrate ( ) ;
}
} else if ( command = = CMD_RADIO_STATE ) {
if ( sbyte = = 0xFF ) {
kiss_indicate_radiostate ( ) ;
} else if ( sbyte = = 0x00 ) {
stopRadio ( ) ;
kiss_indicate_radiostate ( ) ;
} else if ( sbyte = = 0x01 ) {
startRadio ( ) ;
kiss_indicate_radiostate ( ) ;
}
} else if ( command = = CMD_STAT_RX ) {
kiss_indicate_stat_rx ( ) ;
} else if ( command = = CMD_STAT_TX ) {
kiss_indicate_stat_tx ( ) ;
} else if ( command = = CMD_STAT_RSSI ) {
kiss_indicate_stat_rssi ( ) ;
} else if ( command = = CMD_RADIO_LOCK ) {
update_radio_lock ( ) ;
kiss_indicate_radio_lock ( ) ;
} else if ( command = = CMD_BLINK ) {
led_indicate_info ( sbyte ) ;
} else if ( command = = CMD_RANDOM ) {
kiss_indicate_random ( getRandom ( ) ) ;
} else if ( command = = CMD_DETECT ) {
if ( sbyte = = DETECT_REQ ) {
kiss_indicate_detect ( ) ;
}
} else if ( command = = CMD_PROMISC ) {
if ( sbyte = = 0x01 ) {
promisc_enable ( ) ;
} else if ( sbyte = = 0x00 ) {
promisc_disable ( ) ;
}
kiss_indicate_promisc ( ) ;
} else if ( command = = CMD_UNLOCK_ROM ) {
if ( sbyte = = ROM_UNLOCK_BYTE ) {
unlock_rom ( ) ;
}
} else if ( command = = CMD_ROM_READ ) {
kiss_dump_eeprom ( ) ;
} else if ( command = = CMD_ROM_WRITE ) {
if ( sbyte = = FESC ) {
ESCAPE = true ;
} else {
if ( ESCAPE ) {
if ( sbyte = = TFEND ) sbyte = FEND ;
if ( sbyte = = TFESC ) sbyte = FESC ;
ESCAPE = false ;
}
cbuf [ frame_len + + ] = sbyte ;
}
if ( frame_len = = 2 ) {
eeprom_write ( cbuf [ 0 ] , cbuf [ 1 ] ) ;
}
} else if ( command = = CMD_FW_VERSION ) {
kiss_indicate_version ( ) ;
} else if ( command = = CMD_CONF_SAVE ) {
eeprom_conf_save ( ) ;
} else if ( command = = CMD_CONF_DELETE ) {
eeprom_conf_delete ( ) ;
}
}
}
void updateModemStatus ( ) {
uint8_t status = LoRa . modemStatus ( ) ;
last_status_update = millis ( ) ;
if ( status & SIG_DETECT = = 0x01 ) { stat_signal_detected = true ; } else { stat_signal_detected = false ; }
if ( status & SIG_SYNCED = = 0x01 ) { stat_signal_synced = true ; } else { stat_signal_synced = false ; }
if ( status & RX_ONGOING = = 0x01 ) { stat_rx_ongoing = true ; } else { stat_rx_ongoing = false ; }
if ( stat_signal_detected | | stat_signal_synced | | stat_rx_ongoing ) {
if ( dcd_count < dcd_threshold ) {
dcd_count + + ;
dcd = true ;
} else {
dcd = true ;
dcd_led = true ;
}
} else {
if ( dcd_count > 0 ) {
dcd_count - - ;
} else {
dcd_led = false ;
}
dcd = false ;
}
if ( dcd_led ) {
led_rx_on ( ) ;
} else {
led_rx_off ( ) ;
}
}
void checkModemStatus ( ) {
if ( millis ( ) - last_status_update > = status_interval_ms ) {
updateModemStatus ( ) ;
}
}
void validateStatus ( ) {
if ( eeprom_lock_set ( ) ) {
if ( eeprom_product_valid ( ) & & eeprom_model_valid ( ) & & eeprom_hwrev_valid ( ) ) {
if ( eeprom_checksum_valid ( ) ) {
hw_ready = true ;
if ( eeprom_have_conf ( ) ) {
eeprom_conf_load ( ) ;
op_mode = MODE_TNC ;
startRadio ( ) ;
}
}
} else {
hw_ready = false ;
}
} else {
hw_ready = false ;
}
}
void loop ( ) {
if ( radio_online ) {
checkModemStatus ( ) ;
if ( outboundReady ( ) & & ! SERIAL_READING ) {
if ( ! dcd_waiting ) updateModemStatus ( ) ;
if ( ! dcd & & ! dcd_led ) {
if ( dcd_waiting ) delay ( lora_rx_turnaround_ms ) ;
updateModemStatus ( ) ;
if ( ! dcd ) {
dcd_waiting = false ;
# if QUEUE_SIZE > 0
processQueue ( ) ;
# else
outbound_ready = false ;
transmit ( frame_len ) ;
# endif
}
} else {
dcd_waiting = true ;
}
}
} else {
if ( hw_ready ) {
led_indicate_standby ( ) ;
} else {
led_indicate_not_ready ( ) ;
stopRadio ( ) ;
}
}
if ( Serial . available ( ) ) {
SERIAL_READING = true ;
char sbyte = Serial . read ( ) ;
serialCallback ( sbyte ) ;
last_serial_read = millis ( ) ;
} else {
if ( SERIAL_READING & & millis ( ) - last_serial_read > = serial_read_timeout_ms ) {
SERIAL_READING = false ;
}
}
}