// Copyright (C) 2023, Mark Qvist
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
# include <Arduino.h>
# include <SPI.h>
# include "Utilities.h"
# if MCU_VARIANT == MCU_NRF52
# define INTERFACE_SPI
// Required because on RAK4631, non-default SPI pins must be initialised when class is declared.
SPIClass interface_spi [ 1 ] = {
// SX1262
SPIClass (
NRF_SPIM2 ,
interface_pins [ 0 ] [ 3 ] ,
interface_pins [ 0 ] [ 1 ] ,
interface_pins [ 0 ] [ 2 ]
)
} ;
# endif
# ifndef INTERFACE_SPI
// INTERFACE_SPI is only required on NRF52 platforms, as the SPI pins are set in the class constructor and not by a setter method.
// Even if custom SPI interfaces are not needed, the array must exist to prevent compilation errors.
# define INTERFACE_SPI
SPIClass interface_spi [ 1 ] ;
# endif
FIFOBuffer serialFIFO ;
uint8_t serialBuffer [ CONFIG_UART_BUFFER_SIZE + 1 ] ;
uint16_t packet_starts_buf [ ( CONFIG_QUEUE_MAX_LENGTH ) + 1 ] ;
uint16_t packet_lengths_buf [ ( CONFIG_QUEUE_MAX_LENGTH ) + 1 ] ;
FIFOBuffer16 packet_starts [ INTERFACE_COUNT ] ;
FIFOBuffer16 packet_lengths [ INTERFACE_COUNT ] ;
volatile uint8_t queue_height [ INTERFACE_COUNT ] = { 0 } ;
volatile uint16_t queued_bytes [ INTERFACE_COUNT ] = { 0 } ;
volatile uint16_t queue_cursor [ INTERFACE_COUNT ] = { 0 } ;
volatile uint16_t current_packet_start [ INTERFACE_COUNT ] = { 0 } ;
volatile bool serial_buffering = false ;
# if HAS_BLUETOOTH || HAS_BLE == true
bool bt_init_ran = false ;
# endif
# if HAS_CONSOLE
# include "Console.h"
# endif
char sbuf [ 128 ] ;
bool packet_ready = false ;
uint8_t * packet_queue [ INTERFACE_COUNT ] ;
void setup ( ) {
# if MCU_VARIANT == MCU_ESP32
boot_seq ( ) ;
EEPROM . begin ( EEPROM_SIZE ) ;
Serial . setRxBufferSize ( CONFIG_UART_BUFFER_SIZE ) ;
# endif
# if MCU_VARIANT == MCU_NRF52
if ( ! eeprom_begin ( ) ) {
Serial . write ( " EEPROM initialisation failed. \r \n " ) ;
}
# endif
// Seed the PRNG for CSMA R-value selection
# if MCU_VARIANT == MCU_ESP32
// On ESP32, get the seed value from the
// hardware RNG
int seed_val = ( int ) esp_random ( ) ;
# else
// Otherwise, get a pseudo-random seed
// value from an unconnected analog pin
int seed_val = analogRead ( 0 ) ;
# endif
randomSeed ( seed_val ) ;
// Initialise serial communication
memset ( serialBuffer , 0 , sizeof ( serialBuffer ) ) ;
fifo_init ( & serialFIFO , serialBuffer , CONFIG_UART_BUFFER_SIZE ) ;
Serial . begin ( serial_baudrate ) ;
# if BOARD_MODEL != BOARD_RAK4631 && BOARD_MODEL != BOARD_T3S3
// Some boards need to wait until the hardware UART is set up before booting
// the full firmware. In the case of the RAK4631, the line below will wait
// until a serial connection is actually established with a master. Thus, it
// is disabled on this platform.
while ( ! Serial ) ;
# endif
// Configure input and output pins
# if HAS_INPUT
input_init ( ) ;
# endif
# if HAS_NP == false
pinMode ( pin_led_rx , OUTPUT ) ;
pinMode ( pin_led_tx , OUTPUT ) ;
# endif
for ( int i = 0 ; i < INTERFACE_COUNT ; i + + ) {
if ( interface_pins [ i ] [ 9 ] ! = - 1 ) {
pinMode ( interface_pins [ i ] [ 9 ] , OUTPUT ) ;
digitalWrite ( interface_pins [ i ] [ 9 ] , HIGH ) ;
}
}
// Initialise buffers
memset ( pbuf , 0 , sizeof ( pbuf ) ) ;
memset ( cmdbuf , 0 , sizeof ( cmdbuf ) ) ;
memset ( packet_starts_buf , 0 , sizeof ( packet_starts_buf ) ) ;
memset ( packet_lengths_buf , 0 , sizeof ( packet_starts_buf ) ) ;
for ( int i = 0 ; i < INTERFACE_COUNT ; i + + ) {
fifo16_init ( & packet_starts [ i ] , packet_starts_buf , CONFIG_QUEUE_MAX_LENGTH ) ;
fifo16_init ( & packet_lengths [ i ] , packet_lengths_buf , CONFIG_QUEUE_MAX_LENGTH ) ;
packet_queue [ i ] = ( uint8_t * ) malloc ( getQueueSize ( i ) + 1 ) ;
}
memset ( packet_rdy_interfaces_buf , 0 , sizeof ( packet_rdy_interfaces_buf ) ) ;
fifo_init ( & packet_rdy_interfaces , packet_rdy_interfaces_buf , MAX_INTERFACES ) ;
// Create and configure interface objects
for ( uint8_t i = 0 ; i < INTERFACE_COUNT ; i + + ) {
switch ( interfaces [ i ] ) {
case SX126X :
case SX1262 :
{
sx126x * obj ;
// if default spi enabled
if ( interface_cfg [ i ] [ 0 ] ) {
obj = new sx126x ( i , & SPI , interface_cfg [ i ] [ 1 ] ,
interface_cfg [ i ] [ 2 ] , interface_pins [ i ] [ 0 ] , interface_pins [ i ] [ 1 ] ,
interface_pins [ i ] [ 2 ] , interface_pins [ i ] [ 3 ] , interface_pins [ i ] [ 6 ] ,
interface_pins [ i ] [ 5 ] , interface_pins [ i ] [ 4 ] , interface_pins [ i ] [ 8 ] ) ;
}
else {
obj = new sx126x ( i , & interface_spi [ i ] , interface_cfg [ i ] [ 1 ] ,
interface_cfg [ i ] [ 2 ] , interface_pins [ i ] [ 0 ] , interface_pins [ i ] [ 1 ] ,
interface_pins [ i ] [ 2 ] , interface_pins [ i ] [ 3 ] , interface_pins [ i ] [ 6 ] ,
interface_pins [ i ] [ 5 ] , interface_pins [ i ] [ 4 ] , interface_pins [ i ] [ 8 ] ) ;
}
interface_obj [ i ] = obj ;
interface_obj_sorted [ i ] = obj ;
break ;
}
case SX127X :
case SX1276 :
case SX1278 :
{
sx127x * obj ;
// if default spi enabled
if ( interface_cfg [ i ] [ 0 ] ) {
obj = new sx127x ( i , & SPI , interface_pins [ i ] [ 0 ] ,
interface_pins [ i ] [ 1 ] , interface_pins [ i ] [ 2 ] , interface_pins [ i ] [ 3 ] ,
interface_pins [ i ] [ 6 ] , interface_pins [ i ] [ 5 ] , interface_pins [ i ] [ 4 ] ) ;
}
else {
obj = new sx127x ( i , & interface_spi [ i ] , interface_pins [ i ] [ 0 ] ,
interface_pins [ i ] [ 1 ] , interface_pins [ i ] [ 2 ] , interface_pins [ i ] [ 3 ] ,
interface_pins [ i ] [ 6 ] , interface_pins [ i ] [ 5 ] , interface_pins [ i ] [ 4 ] ) ;
}
interface_obj [ i ] = obj ;
interface_obj_sorted [ i ] = obj ;
break ;
}
case SX128X :
case SX1280 :
{
sx128x * obj ;
// if default spi enabled
if ( interface_cfg [ i ] [ 0 ] ) {
obj = new sx128x ( i , & SPI , interface_cfg [ i ] [ 1 ] ,
interface_pins [ i ] [ 0 ] , interface_pins [ i ] [ 1 ] , interface_pins [ i ] [ 2 ] ,
interface_pins [ i ] [ 3 ] , interface_pins [ i ] [ 6 ] , interface_pins [ i ] [ 5 ] ,
interface_pins [ i ] [ 4 ] , interface_pins [ i ] [ 8 ] , interface_pins [ i ] [ 7 ] ) ;
}
else {
obj = new sx128x ( i , & interface_spi [ i ] , interface_cfg [ i ] [ 1 ] ,
interface_pins [ i ] [ 0 ] , interface_pins [ i ] [ 1 ] , interface_pins [ i ] [ 2 ] ,
interface_pins [ i ] [ 3 ] , interface_pins [ i ] [ 6 ] , interface_pins [ i ] [ 5 ] ,
interface_pins [ i ] [ 4 ] , interface_pins [ i ] [ 8 ] , interface_pins [ i ] [ 7 ] ) ;
}
interface_obj [ i ] = obj ;
interface_obj_sorted [ i ] = obj ;
break ;
}
default :
break ;
}
}
// Check installed transceiver chip(s) and probe boot parameters. If any of
// the configured modems cannot be initialised, do not boot
for ( int i = 0 ; i < INTERFACE_COUNT ; i + + ) {
switch ( interfaces [ i ] ) {
case SX126X :
case SX1262 :
case SX127X :
case SX1276 :
case SX1278 :
case SX128X :
case SX1280 :
selected_radio = interface_obj [ i ] ;
break ;
default :
modems_installed = false ;
break ;
}
if ( selected_radio - > preInit ( ) ) {
modems_installed = true ;
uint32_t lfr = selected_radio - > getFrequency ( ) ;
if ( lfr = = 0 ) {
// Normal boot
} else if ( lfr = = M_FRQ_R ) {
// Quick reboot
# if HAS_CONSOLE
if ( rtc_get_reset_reason ( 0 ) = = POWERON_RESET ) {
console_active = true ;
}
# endif
} else {
// Unknown boot
}
selected_radio - > setFrequency ( M_FRQ_S ) ;
} else {
modems_installed = false ;
}
if ( ! modems_installed ) {
break ;
}
}
# if HAS_DISPLAY
# if HAS_EEPROM
if ( EEPROM . read ( eeprom_addr ( ADDR_CONF_DSET ) ) ! = CONF_OK_BYTE ) {
# elif MCU_VARIANT == MCU_NRF52
if ( eeprom_read ( eeprom_addr ( ADDR_CONF_DSET ) ) ! = CONF_OK_BYTE ) {
# endif
eeprom_update ( eeprom_addr ( ADDR_CONF_DSET ) , CONF_OK_BYTE ) ;
eeprom_update ( eeprom_addr ( ADDR_CONF_DINT ) , 0xFF ) ;
}
# if DISPLAY == EINK_BW || DISPLAY == EINK_3C
// Poll and process incoming serial commands whilst e-ink display is
// refreshing to make device still seem responsive
display_add_callback ( process_serial ) ;
# endif
disp_ready = display_init ( ) ;
update_display ( ) ;
# endif
# if HAS_PMU == true
pmu_ready = init_pmu ( ) ;
# endif
# if HAS_BLUETOOTH || HAS_BLE == true
bt_init ( ) ;
bt_init_ran = true ;
# endif
if ( console_active ) {
# if HAS_CONSOLE
console_start ( ) ;
# else
kiss_indicate_reset ( ) ;
# endif
} else {
kiss_indicate_reset ( ) ;
}
// Validate board health, EEPROM and config
validate_status ( ) ;
}
void lora_receive ( RadioInterface * radio ) {
if ( ! implicit ) {
radio - > receive ( ) ;
} else {
radio - > receive ( implicit_l ) ;
}
}
inline void kiss_write_packet ( int index ) {
// We need to convert the interface index to the command byte representation
uint8_t cmd_byte = getInterfaceCommandByte ( index ) ;
serial_write ( FEND ) ;
// Add index of interface the packet came from
serial_write ( cmd_byte ) ;
for ( uint16_t i = 0 ; i < read_len ; i + + ) {
uint8_t byte = pbuf [ i ] ;
if ( byte = = FEND ) { serial_write ( FESC ) ; byte = TFEND ; }
if ( byte = = FESC ) { serial_write ( FESC ) ; byte = TFESC ; }
serial_write ( byte ) ;
}
serial_write ( FEND ) ;
read_len = 0 ;
packet_ready = false ;
}
inline void getPacketData ( RadioInterface * radio , uint16_t len ) {
while ( len - - & & read_len < MTU ) {
pbuf [ read_len + + ] = radio - > read ( ) ;
}
}
void receive_callback ( uint8_t index , int packet_size ) {
if ( ! promisc ) {
selected_radio = interface_obj [ index ] ;
// The standard operating mode allows large
// packets with a payload up to 500 bytes,
// by combining two raw LoRa packets.
// We read the 1-byte header and extract
// packet sequence number and split flags
uint8_t header = selected_radio - > read ( ) ; packet_size - - ;
uint8_t sequence = packetSequence ( header ) ;
bool ready = false ;
if ( isSplitPacket ( header ) & & seq = = SEQ_UNSET ) {
// This is the first part of a split
// packet, so we set the seq variable
// and add the data to the buffer
read_len = 0 ;
seq = sequence ;
getPacketData ( selected_radio , packet_size ) ;
} else if ( isSplitPacket ( header ) & & seq = = sequence ) {
// This is the second part of a split
// packet, so we add it to the buffer
// and set the ready flag.
getPacketData ( selected_radio , packet_size ) ;
seq = SEQ_UNSET ;
ready = true ;
} else if ( isSplitPacket ( header ) & & seq ! = sequence ) {
// This split packet does not carry the
// same sequence id, so we must assume
// that we are seeing the first part of
// a new split packet.
read_len = 0 ;
seq = sequence ;
getPacketData ( selected_radio , packet_size ) ;
} else if ( ! isSplitPacket ( header ) ) {
// This is not a split packet, so we
// just read it and set the ready
// flag to true.
if ( seq ! = SEQ_UNSET ) {
// If we already had part of a split
// packet in the buffer, we clear it.
read_len = 0 ;
seq = SEQ_UNSET ;
}
getPacketData ( selected_radio , packet_size ) ;
ready = true ;
}
if ( ready ) {
packet_ready = true ;
}
} else {
// In promiscuous mode, raw packets are
// output directly to the host
read_len = 0 ;
getPacketData ( selected_radio , packet_size ) ;
packet_ready = true ;
}
if ( packet_ready ) {
# if MCU_VARIANT == MCU_ESP32
portENTER_CRITICAL ( & update_lock ) ;
# elif MCU_VARIANT == MCU_NRF52
portENTER_CRITICAL ( ) ;
# endif
last_rssi = selected_radio - > packetRssi ( ) ;
last_snr_raw = selected_radio - > packetSnrRaw ( ) ;
# if MCU_VARIANT == MCU_ESP32
portEXIT_CRITICAL ( & update_lock ) ;
# elif MCU_VARIANT == MCU_NRF52
portEXIT_CRITICAL ( ) ;
# endif
kiss_indicate_stat_rssi ( ) ;
kiss_indicate_stat_snr ( ) ;
kiss_write_packet ( index ) ;
}
last_rx = millis ( ) ;
}
bool startRadio ( RadioInterface * radio ) {
update_radio_lock ( radio ) ;
if ( modems_installed & & ! console_active ) {
if ( ! radio - > getRadioLock ( ) & & hw_ready ) {
if ( ! radio - > begin ( ) ) {
// The radio could not be started.
// Indicate this failure over both the
// serial port and with the onboard LEDs
kiss_indicate_error ( ERROR_INITRADIO ) ;
led_indicate_error ( 0 ) ;
return false ;
} else {
radio - > enableCrc ( ) ;
radio - > onReceive ( receive_callback ) ;
radio - > updateBitrate ( ) ;
sort_interfaces ( ) ;
kiss_indicate_phy_stats ( radio ) ;
lora_receive ( radio ) ;
// Flash an info pattern to indicate
// that the radio is now on
kiss_indicate_radiostate ( radio ) ;
led_indicate_info ( 3 ) ;
return true ;
}
} else {
// Flash a warning pattern to indicate
// that the radio was locked, and thus
// not started
kiss_indicate_radiostate ( radio ) ;
led_indicate_warning ( 3 ) ;
return false ;
}
} else {
// If radio is already on, we silently
// ignore the request.
kiss_indicate_radiostate ( radio ) ;
return true ;
}
}
void stopRadio ( RadioInterface * radio ) {
radio - > end ( ) ;
sort_interfaces ( ) ;
kiss_indicate_radiostate ( radio ) ;
}
void update_radio_lock ( RadioInterface * radio ) {
if ( radio - > getFrequency ( ) ! = 0 & & radio - > getSignalBandwidth ( ) ! = 0 & & radio - > getTxPower ( ) ! = 0xFF & & radio - > getSpreadingFactor ( ) ! = 0 ) {
radio - > setRadioLock ( false ) ;
} else {
radio - > setRadioLock ( true ) ;
}
}
// Check if the queue is full for the selected radio.
// Returns true if full, false if not
bool queueFull ( RadioInterface * radio ) {
return ( queue_height [ radio - > getIndex ( ) ] > = ( CONFIG_QUEUE_MAX_LENGTH ) | | queued_bytes [ radio - > getIndex ( ) ] > = ( getQueueSize ( radio - > getIndex ( ) ) ) ) ;
}
volatile bool queue_flushing = false ;
// Flushes all packets for the interface
void flushQueue ( RadioInterface * radio ) {
uint8_t index = radio - > getIndex ( ) ;
if ( ! queue_flushing ) {
queue_flushing = true ;
led_tx_on ( ) ;
uint16_t processed = 0 ;
uint8_t data_byte ;
while ( ! fifo16_isempty ( & packet_starts [ index ] ) ) {
uint16_t start = fifo16_pop ( & packet_starts [ index ] ) ;
uint16_t length = fifo16_pop ( & packet_lengths [ index ] ) ;
if ( length > = MIN_L & & length < = MTU ) {
for ( uint16_t i = 0 ; i < length ; i + + ) {
uint16_t pos = ( start + i ) % ( getQueueSize ( index ) ) ;
tbuf [ i ] = packet_queue [ index ] [ pos ] ;
}
transmit ( radio , length ) ;
processed + + ;
}
}
lora_receive ( radio ) ;
led_tx_off ( ) ;
radio - > setPostTxYieldTimeout ( millis ( ) + ( lora_post_tx_yield_slots * selected_radio - > getCSMASlotMS ( ) ) ) ;
}
queue_height [ index ] = 0 ;
queued_bytes [ index ] = 0 ;
selected_radio - > updateAirtime ( ) ;
queue_flushing = false ;
}
void transmit ( RadioInterface * radio , uint16_t size ) {
if ( radio - > getRadioOnline ( ) ) {
if ( ! promisc ) {
uint16_t written = 0 ;
uint8_t header = random ( 256 ) & 0xF0 ;
if ( size > SINGLE_MTU - HEADER_L ) {
header = header | FLAG_SPLIT ;
}
radio - > beginPacket ( ) ;
radio - > write ( header ) ; written + + ;
for ( uint16_t i = 0 ; i < size ; i + + ) {
radio - > write ( tbuf [ i ] ) ;
written + + ;
if ( written = = 255 ) {
radio - > endPacket ( ) ; radio - > addAirtime ( written ) ;
radio - > beginPacket ( ) ;
radio - > write ( header ) ;
written = 1 ;
}
}
radio - > endPacket ( ) ; radio - > addAirtime ( written ) ;
} else {
// In promiscuous mode, we only send out
// plain raw LoRa packets with a maximum
// payload of 255 bytes
led_tx_on ( ) ;
uint16_t written = 0 ;
// Cap packets at 255 bytes
if ( size > SINGLE_MTU ) {
size = SINGLE_MTU ;
}
// If implicit header mode has been set,
// set packet length to payload data length
if ( ! implicit ) {
radio - > beginPacket ( ) ;
} else {
radio - > beginPacket ( size ) ;
}
for ( uint16_t i = 0 ; i < size ; i + + ) {
radio - > write ( tbuf [ i ] ) ;
written + + ;
}
radio - > endPacket ( ) ; radio - > addAirtime ( written ) ;
}
last_tx = millis ( ) ;
} else {
kiss_indicate_error ( ERROR_TXFAILED ) ;
led_indicate_error ( 5 ) ;
}
}
void serialCallback ( uint8_t sbyte ) {
if ( IN_FRAME & & sbyte = = FEND & &
( command = = CMD_INT0_DATA
| | command = = CMD_INT1_DATA
| | command = = CMD_INT2_DATA
| | command = = CMD_INT3_DATA
| | command = = CMD_INT4_DATA
| | command = = CMD_INT5_DATA
| | command = = CMD_INT6_DATA
| | command = = CMD_INT7_DATA
| | command = = CMD_INT8_DATA
| | command = = CMD_INT9_DATA
| | command = = CMD_INT10_DATA
| | command = = CMD_INT11_DATA ) ) {
IN_FRAME = false ;
if ( getInterfaceIndex ( command ) < INTERFACE_COUNT ) {
uint8_t index = getInterfaceIndex ( command ) ;
if ( ! fifo16_isfull ( & packet_starts [ index ] ) & & ( queued_bytes [ index ] < ( getQueueSize ( index ) ) ) ) {
uint16_t s = current_packet_start [ index ] ;
uint16_t e = queue_cursor [ index ] - 1 ; if ( e = = - 1 ) e = ( getQueueSize ( index ) ) - 1 ;
uint16_t l ;
if ( s ! = e ) {
l = ( s < e ) ? e - s + 1 : ( getQueueSize ( index ) ) - s + e + 1 ;
} else {
l = 1 ;
}
if ( l > = MIN_L ) {
queue_height [ index ] + + ;
fifo16_push ( & packet_starts [ index ] , s ) ;
fifo16_push ( & packet_lengths [ index ] , l ) ;
current_packet_start [ index ] = queue_cursor [ index ] ;
}
}
}
} else if ( sbyte = = FEND ) {
IN_FRAME = true ;
command = CMD_UNKNOWN ;
frame_len = 0 ;
} else if ( IN_FRAME & & frame_len < MTU ) {
// Have a look at the command byte first
if ( frame_len = = 0 & & command = = CMD_UNKNOWN ) {
command = sbyte ;
if ( command = = CMD_SEL_INT0
| | command = = CMD_SEL_INT1
| | command = = CMD_SEL_INT2
| | command = = CMD_SEL_INT3
| | command = = CMD_SEL_INT4
| | command = = CMD_SEL_INT5
| | command = = CMD_SEL_INT6
| | command = = CMD_SEL_INT7
| | command = = CMD_SEL_INT8
| | command = = CMD_SEL_INT9
| | command = = CMD_SEL_INT10
| | command = = CMD_SEL_INT11 ) {
interface = getInterfaceIndex ( command ) ;
}
} else if ( command = = CMD_INT0_DATA
| | command = = CMD_INT1_DATA
| | command = = CMD_INT2_DATA
| | command = = CMD_INT3_DATA
| | command = = CMD_INT4_DATA
| | command = = CMD_INT5_DATA
| | command = = CMD_INT6_DATA
| | command = = CMD_INT7_DATA
| | command = = CMD_INT8_DATA
| | command = = CMD_INT9_DATA
| | command = = CMD_INT10_DATA
| | command = = CMD_INT11_DATA ) {
if ( bt_state ! = BT_STATE_CONNECTED ) cable_state = CABLE_STATE_CONNECTED ;
if ( sbyte = = FESC ) {
ESCAPE = true ;
} else {
if ( ESCAPE ) {
if ( sbyte = = TFEND ) sbyte = FEND ;
if ( sbyte = = TFESC ) sbyte = FESC ;
ESCAPE = false ;
}
if ( getInterfaceIndex ( command ) < INTERFACE_COUNT ) {
uint8_t index = getInterfaceIndex ( command ) ;
if ( queue_height [ index ] < CONFIG_QUEUE_MAX_LENGTH & & queued_bytes [ index ] < ( getQueueSize ( index ) ) ) {
queued_bytes [ index ] + + ;
packet_queue [ index ] [ queue_cursor [ index ] + + ] = sbyte ;
if ( queue_cursor [ index ] = = ( getQueueSize ( index ) ) ) queue_cursor [ index ] = 0 ;
}
}
}
} else if ( command = = CMD_INTERFACES ) {
for ( int i = 0 ; i < INTERFACE_COUNT ; i + + ) {
kiss_indicate_interface ( i ) ;
}
} else if ( command = = CMD_FREQUENCY ) {
if ( sbyte = = FESC ) {
ESCAPE = true ;
} else {
if ( ESCAPE ) {
if ( sbyte = = TFEND ) sbyte = FEND ;
if ( sbyte = = TFESC ) sbyte = FESC ;
ESCAPE = false ;
}
if ( frame_len < CMD_L ) cmdbuf [ frame_len + + ] = sbyte ;
}
if ( frame_len = = 4 ) {
uint32_t freq = ( uint32_t ) cmdbuf [ 0 ] < < 24 | ( uint32_t ) cmdbuf [ 1 ] < < 16 | ( uint32_t ) cmdbuf [ 2 ] < < 8 | ( uint32_t ) cmdbuf [ 3 ] ;
selected_radio = interface_obj [ interface ] ;
if ( freq = = 0 ) {
kiss_indicate_frequency ( selected_radio ) ;
} else {
if ( op_mode = = MODE_HOST ) selected_radio - > setFrequency ( freq ) ;
kiss_indicate_frequency ( selected_radio ) ;
}
interface = 0 ;
}
} else if ( command = = CMD_BANDWIDTH ) {
if ( sbyte = = FESC ) {
ESCAPE = true ;
} else {
if ( ESCAPE ) {
if ( sbyte = = TFEND ) sbyte = FEND ;
if ( sbyte = = TFESC ) sbyte = FESC ;
ESCAPE = false ;
}
if ( frame_len < CMD_L ) cmdbuf [ frame_len + + ] = sbyte ;
}
if ( frame_len = = 4 ) {
uint32_t bw = ( uint32_t ) cmdbuf [ 0 ] < < 24 | ( uint32_t ) cmdbuf [ 1 ] < < 16 | ( uint32_t ) cmdbuf [ 2 ] < < 8 | ( uint32_t ) cmdbuf [ 3 ] ;
selected_radio = interface_obj [ interface ] ;
if ( bw = = 0 ) {
kiss_indicate_bandwidth ( selected_radio ) ;
} else {
if ( op_mode = = MODE_HOST ) selected_radio - > setSignalBandwidth ( bw ) ;
selected_radio - > updateBitrate ( ) ;
sort_interfaces ( ) ;
kiss_indicate_bandwidth ( selected_radio ) ;
kiss_indicate_phy_stats ( selected_radio ) ;
}
interface = 0 ;
}
} else if ( command = = CMD_TXPOWER ) {
selected_radio = interface_obj [ interface ] ;
if ( sbyte = = 0xFF ) {
kiss_indicate_txpower ( selected_radio ) ;
} else {
int8_t txp = ( int8_t ) sbyte ;
if ( op_mode = = MODE_HOST ) setTXPower ( selected_radio , txp ) ;
kiss_indicate_txpower ( selected_radio ) ;
}
interface = 0 ;
} else if ( command = = CMD_SF ) {
selected_radio = interface_obj [ interface ] ;
if ( sbyte = = 0xFF ) {
kiss_indicate_spreadingfactor ( selected_radio ) ;
} else {
int sf = sbyte ;
if ( sf < 5 ) sf = 5 ;
if ( sf > 12 ) sf = 12 ;
if ( op_mode = = MODE_HOST ) selected_radio - > setSpreadingFactor ( sf ) ;
selected_radio - > updateBitrate ( ) ;
sort_interfaces ( ) ;
kiss_indicate_spreadingfactor ( selected_radio ) ;
kiss_indicate_phy_stats ( selected_radio ) ;
}
interface = 0 ;
} else if ( command = = CMD_CR ) {
selected_radio = interface_obj [ interface ] ;
if ( sbyte = = 0xFF ) {
kiss_indicate_codingrate ( selected_radio ) ;
} else {
int cr = sbyte ;
if ( cr < 5 ) cr = 5 ;
if ( cr > 8 ) cr = 8 ;
if ( op_mode = = MODE_HOST ) selected_radio - > setCodingRate4 ( cr ) ;
selected_radio - > updateBitrate ( ) ;
sort_interfaces ( ) ;
kiss_indicate_codingrate ( selected_radio ) ;
kiss_indicate_phy_stats ( selected_radio ) ;
}
interface = 0 ;
} else if ( command = = CMD_IMPLICIT ) {
set_implicit_length ( sbyte ) ;
kiss_indicate_implicit_length ( ) ;
} else if ( command = = CMD_LEAVE ) {
if ( sbyte = = 0xFF ) {
cable_state = CABLE_STATE_DISCONNECTED ;
//current_rssi = -292;
last_rssi = - 292 ;
last_rssi_raw = 0x00 ;
last_snr_raw = 0x80 ;
}
} else if ( command = = CMD_RADIO_STATE ) {
selected_radio = interface_obj [ interface ] ;
if ( bt_state ! = BT_STATE_CONNECTED ) cable_state = CABLE_STATE_CONNECTED ;
if ( sbyte = = 0xFF ) {
kiss_indicate_radiostate ( selected_radio ) ;
} else if ( sbyte = = 0x00 ) {
stopRadio ( selected_radio ) ;
} else if ( sbyte = = 0x01 ) {
startRadio ( selected_radio ) ;
}
interface = 0 ;
} else if ( command = = CMD_ST_ALOCK ) {
selected_radio = interface_obj [ interface ] ;
if ( sbyte = = FESC ) {
ESCAPE = true ;
} else {
if ( ESCAPE ) {
if ( sbyte = = TFEND ) sbyte = FEND ;
if ( sbyte = = TFESC ) sbyte = FESC ;
ESCAPE = false ;
}
if ( frame_len < CMD_L ) cmdbuf [ frame_len + + ] = sbyte ;
}
if ( frame_len = = 2 ) {
uint16_t at = ( uint16_t ) cmdbuf [ 0 ] < < 8 | ( uint16_t ) cmdbuf [ 1 ] ;
if ( at = = 0 ) {
selected_radio - > setSTALock ( 0.0 ) ;
} else {
int st_airtime_limit = ( float ) at / ( 100.0 * 100.0 ) ;
if ( st_airtime_limit > = 1.0 ) { st_airtime_limit = 0.0 ; }
selected_radio - > setSTALock ( st_airtime_limit ) ;
}
kiss_indicate_st_alock ( selected_radio ) ;
}
interface = 0 ;
} else if ( command = = CMD_LT_ALOCK ) {
selected_radio = interface_obj [ interface ] ;
if ( sbyte = = FESC ) {
ESCAPE = true ;
} else {
if ( ESCAPE ) {
if ( sbyte = = TFEND ) sbyte = FEND ;
if ( sbyte = = TFESC ) sbyte = FESC ;
ESCAPE = false ;
}
if ( frame_len < CMD_L ) cmdbuf [ frame_len + + ] = sbyte ;
}
if ( frame_len = = 2 ) {
uint16_t at = ( uint16_t ) cmdbuf [ 0 ] < < 8 | ( uint16_t ) cmdbuf [ 1 ] ;
if ( at = = 0 ) {
selected_radio - > setLTALock ( 0.0 ) ;
} else {
int lt_airtime_limit = ( float ) at / ( 100.0 * 100.0 ) ;
if ( lt_airtime_limit > = 1.0 ) { lt_airtime_limit = 0.0 ; }
selected_radio - > setLTALock ( lt_airtime_limit ) ;
}
kiss_indicate_lt_alock ( selected_radio ) ;
}
interface = 0 ;
} else if ( command = = CMD_STAT_RX ) {
kiss_indicate_stat_rx ( ) ;
} else if ( command = = CMD_STAT_TX ) {
kiss_indicate_stat_tx ( ) ;
} else if ( command = = CMD_STAT_RSSI ) {
kiss_indicate_stat_rssi ( ) ;
} else if ( command = = CMD_RADIO_LOCK ) {
selected_radio = interface_obj [ interface ] ;
update_radio_lock ( selected_radio ) ;
kiss_indicate_radio_lock ( selected_radio ) ;
interface = 0 ;
} else if ( command = = CMD_BLINK ) {
led_indicate_info ( sbyte ) ;
} else if ( command = = CMD_RANDOM ) {
// pick an interface at random to get data from
int int_index = random ( INTERFACE_COUNT ) ;
selected_radio = interface_obj [ int_index ] ;
kiss_indicate_random ( getRandom ( selected_radio ) ) ;
interface = 0 ;
} else if ( command = = CMD_DETECT ) {
if ( sbyte = = DETECT_REQ ) {
if ( bt_state ! = BT_STATE_CONNECTED ) cable_state = CABLE_STATE_CONNECTED ;
kiss_indicate_detect ( ) ;
}
} else if ( command = = CMD_PROMISC ) {
if ( sbyte = = 0x01 ) {
promisc_enable ( ) ;
} else if ( sbyte = = 0x00 ) {
promisc_disable ( ) ;
}
kiss_indicate_promisc ( ) ;
} else if ( command = = CMD_READY ) {
selected_radio = interface_obj [ interface ] ;
if ( ! queueFull ( selected_radio ) ) {
kiss_indicate_ready ( ) ;
} else {
kiss_indicate_not_ready ( ) ;
}
} else if ( command = = CMD_UNLOCK_ROM ) {
if ( sbyte = = ROM_UNLOCK_BYTE ) {
unlock_rom ( ) ;
}
} else if ( command = = CMD_RESET ) {
if ( sbyte = = CMD_RESET_BYTE ) {
hard_reset ( ) ;
}
} else if ( command = = CMD_ROM_READ ) {
kiss_dump_eeprom ( ) ;
} else if ( command = = CMD_ROM_WRITE ) {
if ( sbyte = = FESC ) {
ESCAPE = true ;
} else {
if ( ESCAPE ) {
if ( sbyte = = TFEND ) sbyte = FEND ;
if ( sbyte = = TFESC ) sbyte = FESC ;
ESCAPE = false ;
}
if ( frame_len < CMD_L ) cmdbuf [ frame_len + + ] = sbyte ;
}
if ( frame_len = = 2 ) {
eeprom_write ( cmdbuf [ 0 ] , cmdbuf [ 1 ] ) ;
}
} else if ( command = = CMD_FW_VERSION ) {
kiss_indicate_version ( ) ;
} else if ( command = = CMD_PLATFORM ) {
kiss_indicate_platform ( ) ;
} else if ( command = = CMD_MCU ) {
kiss_indicate_mcu ( ) ;
} else if ( command = = CMD_BOARD ) {
kiss_indicate_board ( ) ;
} else if ( command = = CMD_CONF_SAVE ) {
// todo: add extra space in EEPROM so this isn't hardcoded
eeprom_conf_save ( interface_obj [ 0 ] ) ;
} else if ( command = = CMD_CONF_DELETE ) {
eeprom_conf_delete ( ) ;
} else if ( command = = CMD_FB_EXT ) {
# if HAS_DISPLAY == true
if ( sbyte = = 0xFF ) {
kiss_indicate_fbstate ( ) ;
} else if ( sbyte = = 0x00 ) {
ext_fb_disable ( ) ;
kiss_indicate_fbstate ( ) ;
} else if ( sbyte = = 0x01 ) {
ext_fb_enable ( ) ;
kiss_indicate_fbstate ( ) ;
}
# endif
} else if ( command = = CMD_FB_WRITE ) {
if ( sbyte = = FESC ) {
ESCAPE = true ;
} else {
if ( ESCAPE ) {
if ( sbyte = = TFEND ) sbyte = FEND ;
if ( sbyte = = TFESC ) sbyte = FESC ;
ESCAPE = false ;
}
if ( frame_len < CMD_L ) cmdbuf [ frame_len + + ] = sbyte ;
}
# if HAS_DISPLAY
if ( frame_len = = 9 ) {
uint8_t line = cmdbuf [ 0 ] ;
if ( line > 63 ) line = 63 ;
int fb_o = line * 8 ;
memcpy ( fb + fb_o , cmdbuf + 1 , 8 ) ;
}
# endif
} else if ( command = = CMD_FB_READ ) {
if ( sbyte ! = 0x00 ) {
kiss_indicate_fb ( ) ;
}
} else if ( command = = CMD_DEV_HASH ) {
if ( sbyte ! = 0x00 ) {
kiss_indicate_device_hash ( ) ;
}
} else if ( command = = CMD_DEV_SIG ) {
if ( sbyte = = FESC ) {
ESCAPE = true ;
} else {
if ( ESCAPE ) {
if ( sbyte = = TFEND ) sbyte = FEND ;
if ( sbyte = = TFESC ) sbyte = FESC ;
ESCAPE = false ;
}
if ( frame_len < CMD_L ) cmdbuf [ frame_len + + ] = sbyte ;
}
if ( frame_len = = DEV_SIG_LEN ) {
memcpy ( dev_sig , cmdbuf , DEV_SIG_LEN ) ;
device_save_signature ( ) ;
}
} else if ( command = = CMD_FW_UPD ) {
if ( sbyte = = 0x01 ) {
firmware_update_mode = true ;
} else {
firmware_update_mode = false ;
}
} else if ( command = = CMD_HASHES ) {
if ( sbyte = = 0x01 ) {
kiss_indicate_target_fw_hash ( ) ;
} else if ( sbyte = = 0x02 ) {
kiss_indicate_fw_hash ( ) ;
} else if ( sbyte = = 0x03 ) {
kiss_indicate_bootloader_hash ( ) ;
} else if ( sbyte = = 0x04 ) {
kiss_indicate_partition_table_hash ( ) ;
}
} else if ( command = = CMD_FW_HASH ) {
if ( sbyte = = FESC ) {
ESCAPE = true ;
} else {
if ( ESCAPE ) {
if ( sbyte = = TFEND ) sbyte = FEND ;
if ( sbyte = = TFESC ) sbyte = FESC ;
ESCAPE = false ;
}
if ( frame_len < CMD_L ) cmdbuf [ frame_len + + ] = sbyte ;
}
if ( frame_len = = DEV_HASH_LEN ) {
memcpy ( dev_firmware_hash_target , cmdbuf , DEV_HASH_LEN ) ;
device_save_firmware_hash ( ) ;
}
} else if ( command = = CMD_BT_CTRL ) {
# if HAS_BLUETOOTH || HAS_BLE
if ( sbyte = = 0x00 ) {
bt_stop ( ) ;
bt_conf_save ( false ) ;
} else if ( sbyte = = 0x01 ) {
bt_start ( ) ;
bt_conf_save ( true ) ;
} else if ( sbyte = = 0x02 ) {
bt_enable_pairing ( ) ;
}
# endif
} else if ( command = = CMD_DISP_INT ) {
# if HAS_DISPLAY
if ( sbyte = = FESC ) {
ESCAPE = true ;
} else {
if ( ESCAPE ) {
if ( sbyte = = TFEND ) sbyte = FEND ;
if ( sbyte = = TFESC ) sbyte = FESC ;
ESCAPE = false ;
}
display_intensity = sbyte ;
di_conf_save ( display_intensity ) ;
}
# endif
} else if ( command = = CMD_DISP_ADDR ) {
# if HAS_DISPLAY
if ( sbyte = = FESC ) {
ESCAPE = true ;
} else {
if ( ESCAPE ) {
if ( sbyte = = TFEND ) sbyte = FEND ;
if ( sbyte = = TFESC ) sbyte = FESC ;
ESCAPE = false ;
}
display_addr = sbyte ;
da_conf_save ( display_addr ) ;
}
# endif
}
}
}
# if MCU_VARIANT == MCU_ESP32
portMUX_TYPE update_lock = portMUX_INITIALIZER_UNLOCKED ;
# endif
void validate_status ( ) {
# if MCU_VARIANT == MCU_ESP32
// TODO: Get ESP32 boot flags
uint8_t boot_flags = 0x02 ;
uint8_t F_POR = 0x00 ;
uint8_t F_BOR = 0x00 ;
uint8_t F_WDR = 0x01 ;
# elif MCU_VARIANT == MCU_NRF52
// TODO: Get NRF52 boot flags
uint8_t boot_flags = 0x02 ;
uint8_t F_POR = 0x00 ;
uint8_t F_BOR = 0x00 ;
uint8_t F_WDR = 0x01 ;
# endif
if ( hw_ready | | device_init_done ) {
hw_ready = false ;
Serial . write ( " Error, invalid hardware check state \r \n " ) ;
# if HAS_DISPLAY
if ( disp_ready ) {
device_init_done = true ;
update_display ( ) ;
}
# endif
led_indicate_boot_error ( ) ;
}
if ( boot_flags & ( 1 < < F_POR ) ) {
boot_vector = START_FROM_POWERON ;
} else if ( boot_flags & ( 1 < < F_BOR ) ) {
boot_vector = START_FROM_BROWNOUT ;
} else if ( boot_flags & ( 1 < < F_WDR ) ) {
boot_vector = START_FROM_BOOTLOADER ;
} else {
Serial . write ( " Error, indeterminate boot vector \r \n " ) ;
# if HAS_DISPLAY
if ( disp_ready ) {
device_init_done = true ;
update_display ( ) ;
}
# endif
led_indicate_boot_error ( ) ;
}
if ( boot_vector = = START_FROM_BOOTLOADER | | boot_vector = = START_FROM_POWERON ) {
if ( eeprom_lock_set ( ) ) {
if ( eeprom_product_valid ( ) & & eeprom_model_valid ( ) & & eeprom_hwrev_valid ( ) ) {
if ( eeprom_checksum_valid ( ) ) {
eeprom_ok = true ;
if ( modems_installed ) {
if ( device_init ( ) ) {
hw_ready = true ;
} else {
hw_ready = false ;
}
} else {
hw_ready = false ;
Serial . write ( " No valid radio module found \r \n " ) ;
# if HAS_DISPLAY
if ( disp_ready ) {
device_init_done = true ;
update_display ( ) ;
}
# endif
}
} else {
hw_ready = false ;
# if HAS_DISPLAY
if ( disp_ready ) {
device_init_done = true ;
update_display ( ) ;
}
# endif
}
} else {
hw_ready = false ;
# if HAS_DISPLAY
if ( disp_ready ) {
device_init_done = true ;
update_display ( ) ;
}
# endif
}
} else {
hw_ready = false ;
# if HAS_DISPLAY
if ( disp_ready ) {
device_init_done = true ;
update_display ( ) ;
}
# endif
}
} else {
hw_ready = false ;
Serial . write ( " Error, incorrect boot vector \r \n " ) ;
# if HAS_DISPLAY
if ( disp_ready ) {
device_init_done = true ;
update_display ( ) ;
}
# endif
led_indicate_boot_error ( ) ;
}
}
void loop ( ) {
packet_poll ( ) ;
bool ready = false ;
for ( int i = 0 ; i < INTERFACE_COUNT ; i + + ) {
selected_radio = interface_obj [ i ] ;
if ( selected_radio - > getRadioOnline ( ) ) {
selected_radio - > checkModemStatus ( ) ;
ready = true ;
}
}
// If at least one radio is online then we can continue
if ( ready ) {
for ( int i = 0 ; i < INTERFACE_COUNT ; i + + ) {
selected_radio = interface_obj_sorted [ i ] ;
if ( selected_radio - > calculateALock ( ) | | ! selected_radio - > getRadioOnline ( ) ) {
// skip this interface
continue ;
}
// If a higher data rate interface has received a packet after its
// loop, it still needs to be the first to transmit, so check if this
// is the case.
for ( int j = 0 ; j < INTERFACE_COUNT ; j + + ) {
if ( ! interface_obj_sorted [ j ] - > calculateALock ( ) & & interface_obj_sorted [ j ] - > getRadioOnline ( ) ) {
if ( interface_obj_sorted [ j ] - > getBitrate ( ) > selected_radio - > getBitrate ( ) ) {
if ( queue_height [ interface_obj_sorted [ j ] - > getIndex ( ) ] > 0 ) {
selected_radio = interface_obj_sorted [ j ] ;
}
}
}
}
if ( queue_height [ selected_radio - > getIndex ( ) ] > 0 ) {
long check_time = millis ( ) ;
if ( check_time > selected_radio - > getPostTxYieldTimeout ( ) ) {
if ( selected_radio - > getDCDWaiting ( ) & & ( check_time > = selected_radio - > getDCDWaitUntil ( ) ) ) { selected_radio - > setDCDWaiting ( false ) ; }
if ( ! selected_radio - > getDCDWaiting ( ) ) {
// todo, will the delay here slow down transmission with
// multiple interfaces? needs investigation
for ( uint8_t dcd_i = 0 ; dcd_i < DCD_THRESHOLD * 2 ; dcd_i + + ) {
delay ( STATUS_INTERVAL_MS ) ; selected_radio - > updateModemStatus ( ) ;
}
if ( ! selected_radio - > getDCD ( ) ) {
uint8_t csma_r = ( uint8_t ) random ( 256 ) ;
if ( selected_radio - > getCSMAp ( ) > = csma_r ) {
flushQueue ( selected_radio ) ;
} else {
selected_radio - > setDCDWaiting ( true ) ;
selected_radio - > setDCDWaitUntil ( millis ( ) + selected_radio - > getCSMASlotMS ( ) ) ;
}
}
}
}
}
}
} else {
if ( hw_ready ) {
if ( console_active ) {
# if HAS_CONSOLE
console_loop ( ) ;
# endif
} else {
led_indicate_standby ( ) ;
}
} else {
led_indicate_not_ready ( ) ;
// shut down all radio interfaces
for ( int i = 0 ; i < INTERFACE_COUNT ; i + + ) {
stopRadio ( interface_obj [ i ] ) ;
}
}
}
buffer_serial ( ) ;
if ( ! fifo_isempty ( & serialFIFO ) ) serial_poll ( ) ;
# if HAS_DISPLAY
# if DISPLAY == OLED
if ( disp_ready ) update_display ( ) ;
# elif DISPLAY == EINK_BW || DISPLAY == EINK_3C
// Display refreshes take so long on e-paper displays that they can disrupt
// the regular operation of the device. To combat this the time it is
// chosen to do so must be strategically chosen. Particularly on the
// RAK4631, the display and the potentially installed SX1280 modem share
// the same SPI bus. Thus it is not possible to solve this by utilising the
// callback functionality to poll the modem in this case. todo, this may be
// able to be improved in the future.
if ( disp_ready ) {
if ( millis ( ) - last_tx > = 4000 ) {
if ( millis ( ) - last_rx > = 1000 ) {
update_display ( ) ;
}
}
}
# endif
# endif
# if HAS_PMU
if ( pmu_ready ) update_pmu ( ) ;
# endif
# if HAS_BLUETOOTH || HAS_BLE == true
if ( ! console_active & & bt_ready ) update_bt ( ) ;
# endif
# if HAS_INPUT
input_read ( ) ;
# endif
}
void process_serial ( ) {
buffer_serial ( ) ;
if ( ! fifo_isempty ( & serialFIFO ) ) serial_poll ( ) ;
}
void sleep_now ( ) {
# if HAS_SLEEP == true
# if BOARD_MODEL == BOARD_T3S3
display_intensity = 0 ;
update_display ( true ) ;
# endif
# if PIN_DISP_SLEEP >= 0
pinMode ( PIN_DISP_SLEEP , OUTPUT ) ;
digitalWrite ( PIN_DISP_SLEEP , DISP_SLEEP_LEVEL ) ;
# endif
esp_sleep_enable_ext0_wakeup ( PIN_WAKEUP , WAKEUP_LEVEL ) ;
esp_deep_sleep_start ( ) ;
# endif
}
void button_event ( uint8_t event , unsigned long duration ) {
if ( duration > 2000 ) {
sleep_now ( ) ;
}
}
void poll_buffers ( ) {
process_serial ( ) ;
}
void packet_poll ( ) {
// If we have received a packet on an interface which needs to be processed
while ( ! fifo_isempty ( & packet_rdy_interfaces ) ) {
# if MCU_VARIANT == MCU_ESP32
portENTER_CRITICAL ( & update_lock ) ;
# elif MCU_VARIANT == MCU_NRF52
portENTER_CRITICAL ( ) ;
# endif
uint8_t packet_int = fifo_pop ( & packet_rdy_interfaces ) ;
selected_radio = interface_obj [ packet_int ] ;
# if MCU_VARIANT == MCU_ESP32
portEXIT_CRITICAL ( & update_lock ) ;
# elif MCU_VARIANT == MCU_NRF52
portEXIT_CRITICAL ( ) ;
# endif
selected_radio - > clearIRQStatus ( ) ;
selected_radio - > handleDio0Rise ( ) ;
}
}
volatile bool serial_polling = false ;
void serial_poll ( ) {
serial_polling = true ;
while ( ! fifo_isempty ( & serialFIFO ) ) {
char sbyte = fifo_pop ( & serialFIFO ) ;
serialCallback ( sbyte ) ;
}
serial_polling = false ;
}
# define MAX_CYCLES 20
void buffer_serial ( ) {
if ( ! serial_buffering ) {
serial_buffering = true ;
uint8_t c = 0 ;
# if HAS_BLUETOOTH || HAS_BLE == true
while (
c < MAX_CYCLES & &
( ( bt_state ! = BT_STATE_CONNECTED & & Serial . available ( ) ) | | ( bt_state = = BT_STATE_CONNECTED & & SerialBT . available ( ) ) )
)
# else
while ( c < MAX_CYCLES & & Serial . available ( ) )
# endif
{
c + + ;
# if HAS_BLUETOOTH || HAS_BLE == true
if ( bt_state = = BT_STATE_CONNECTED ) {
if ( ! fifo_isfull ( & serialFIFO ) ) {
fifo_push ( & serialFIFO , SerialBT . read ( ) ) ;
}
} else {
if ( ! fifo_isfull ( & serialFIFO ) ) {
fifo_push ( & serialFIFO , Serial . read ( ) ) ;
}
}
# else
if ( ! fifo_isfull ( & serialFIFO ) ) {
fifo_push ( & serialFIFO , Serial . read ( ) ) ;
}
# endif
}
serial_buffering = false ;
}
}