This is a copy of the community maintained fork of the open firmware which powers RNode devices. This version will have support for the hardware made by Mees Electronics.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

757 lines
23 KiB

// Copyright Sandeep Mistry, Mark Qvist and Jacob Eva.
// Licensed under the MIT license.
#include "Boards.h"
#if MODEM == SX1262
#include "sx126x.h"
#if MCU_VARIANT == MCU_ESP32
#if MCU_VARIANT == MCU_ESP32 and !defined(CONFIG_IDF_TARGET_ESP32S3)
#include "soc/rtc_wdt.h"
#endif
#define ISR_VECT IRAM_ATTR
#else
#define ISR_VECT
#endif
#define OP_RF_FREQ_6X 0x86
#define OP_SLEEP_6X 0x84
#define OP_STANDBY_6X 0x80
#define OP_TX_6X 0x83
#define OP_RX_6X 0x82
#define OP_PA_CONFIG_6X 0x95
#define OP_SET_IRQ_FLAGS_6X 0x08 // Also provides info such as
// preamble detection, etc for
// knowing when it's safe to switch
// antenna modes
#define OP_CLEAR_IRQ_STATUS_6X 0x02
#define OP_GET_IRQ_STATUS_6X 0x12
#define OP_RX_BUFFER_STATUS_6X 0x13
#define OP_PACKET_STATUS_6X 0x14 // Get snr & rssi of last packet
#define OP_CURRENT_RSSI_6X 0x15
#define OP_MODULATION_PARAMS_6X 0x8B // BW, SF, CR, etc.
#define OP_PACKET_PARAMS_6X 0x8C // CRC, preamble, payload length, etc.
#define OP_STATUS_6X 0xC0
#define OP_TX_PARAMS_6X 0x8E // Set dbm, etc
#define OP_PACKET_TYPE_6X 0x8A
#define OP_BUFFER_BASE_ADDR_6X 0x8F
#define OP_READ_REGISTER_6X 0x1D
#define OP_WRITE_REGISTER_6X 0x0D
#define OP_DIO3_TCXO_CTRL_6X 0x97
#define OP_DIO2_RF_CTRL_6X 0x9D
#define OP_CAD_PARAMS 0x88
#define OP_CALIBRATE_6X 0x89
#define OP_RX_TX_FALLBACK_MODE_6X 0x93
#define OP_REGULATOR_MODE_6X 0x96
#define OP_CALIBRATE_IMAGE_6X 0x98
#define MASK_CALIBRATE_ALL 0x7f
#define IRQ_TX_DONE_MASK_6X 0x01
#define IRQ_RX_DONE_MASK_6X 0x02
#define IRQ_HEADER_DET_MASK_6X 0x10
#define IRQ_PREAMBLE_DET_MASK_6X 0x04
#define IRQ_PAYLOAD_CRC_ERROR_MASK_6X 0x40
#define IRQ_ALL_MASK_6X 0b0100001111111111
#define MODE_LONG_RANGE_MODE_6X 0x01
#define OP_FIFO_WRITE_6X 0x0E
#define OP_FIFO_READ_6X 0x1E
#define REG_OCP_6X 0x08E7
#define REG_LNA_6X 0x08AC // No agc in sx1262
#define REG_SYNC_WORD_MSB_6X 0x0740
#define REG_SYNC_WORD_LSB_6X 0x0741
#define REG_PAYLOAD_LENGTH_6X 0x0702 // https://github.com/beegee-tokyo/SX126x-Arduino/blob/master/src/radio/sx126x/sx126x.h#L98
#define REG_RANDOM_GEN_6X 0x0819
#define MODE_TCXO_3_3V_6X 0x07
#define MODE_TCXO_3_0V_6X 0x06
#define MODE_TCXO_2_7V_6X 0x06
#define MODE_TCXO_2_4V_6X 0x06
#define MODE_TCXO_2_2V_6X 0x03
#define MODE_TCXO_1_8V_6X 0x02
#define MODE_TCXO_1_7V_6X 0x01
#define MODE_TCXO_1_6V_6X 0x00
#define MODE_STDBY_RC_6X 0x00
#define MODE_STDBY_XOSC_6X 0x01
#define MODE_FALLBACK_STDBY_RC_6X 0x20
#define MODE_IMPLICIT_HEADER 0x01
#define MODE_EXPLICIT_HEADER 0x00
#define SYNC_WORD_6X 0x1424
#define XTAL_FREQ_6X (double)32000000
#define FREQ_DIV_6X (double)pow(2.0, 25.0)
#define FREQ_STEP_6X (double)(XTAL_FREQ_6X / FREQ_DIV_6X)
#if BOARD_MODEL == BOARD_TECHO
SPIClass spim3 = SPIClass(NRF_SPIM3, pin_miso, pin_sclk, pin_mosi) ;
#define SPI spim3
#elif defined(NRF52840_XXAA)
extern SPIClass spiModem;
#define SPI spiModem
#endif
extern SPIClass SPI;
#define MAX_PKT_LENGTH 255
sx126x::sx126x() :
_spiSettings(16E6, MSBFIRST, SPI_MODE0),
_ss(LORA_DEFAULT_SS_PIN), _reset(LORA_DEFAULT_RESET_PIN), _dio0(LORA_DEFAULT_DIO0_PIN), _busy(LORA_DEFAULT_BUSY_PIN), _rxen(LORA_DEFAULT_RXEN_PIN),
_frequency(0),
_txp(0),
_sf(0x07),
_bw(0x04),
_cr(0x01),
_ldro(0x00),
_packetIndex(0),
_preambleLength(18),
_implicitHeaderMode(0),
_payloadLength(255),
_crcMode(1),
_fifo_tx_addr_ptr(0),
_fifo_rx_addr_ptr(0),
_packet({0}),
_preinit_done(false),
_onReceive(NULL)
{ setTimeout(0); }
bool sx126x::preInit() {
pinMode(_ss, OUTPUT);
digitalWrite(_ss, HIGH);
#if BOARD_MODEL == BOARD_T3S3 || BOARD_MODEL == BOARD_HELTEC32_V3 || BOARD_MODEL == BOARD_TDECK
SPI.begin(pin_sclk, pin_miso, pin_mosi, pin_cs);
#elif BOARD_MODEL == BOARD_TECHO
SPI.setPins(pin_miso, pin_sclk, pin_mosi);
SPI.begin();
#else
SPI.begin();
#endif
// Check version (retry for up to 2 seconds)
// TODO: Actually read version registers, not syncwords
long start = millis();
uint8_t syncmsb;
uint8_t synclsb;
while (((millis() - start) < 2000) && (millis() >= start)) {
syncmsb = readRegister(REG_SYNC_WORD_MSB_6X);
synclsb = readRegister(REG_SYNC_WORD_LSB_6X);
if ( uint16_t(syncmsb << 8 | synclsb) == 0x1424 || uint16_t(syncmsb << 8 | synclsb) == 0x4434) {
break;
}
delay(100);
}
if ( uint16_t(syncmsb << 8 | synclsb) != 0x1424 && uint16_t(syncmsb << 8 | synclsb) != 0x4434) {
return false;
}
_preinit_done = true;
return true;
}
uint8_t ISR_VECT sx126x::readRegister(uint16_t address) {
return singleTransfer(OP_READ_REGISTER_6X, address, 0x00);
}
void sx126x::writeRegister(uint16_t address, uint8_t value) {
singleTransfer(OP_WRITE_REGISTER_6X, address, value);
}
uint8_t ISR_VECT sx126x::singleTransfer(uint8_t opcode, uint16_t address, uint8_t value) {
waitOnBusy();
uint8_t response;
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(opcode);
SPI.transfer((address & 0xFF00) >> 8);
SPI.transfer(address & 0x00FF);
if (opcode == OP_READ_REGISTER_6X) { SPI.transfer(0x00); }
response = SPI.transfer(value);
SPI.endTransaction();
digitalWrite(_ss, HIGH);
return response;
}
void sx126x::rxAntEnable() {
if (_rxen != -1) { digitalWrite(_rxen, HIGH); }
}
void sx126x::loraMode() {
// Enable lora mode on the SX1262 chip
uint8_t mode = MODE_LONG_RANGE_MODE_6X;
executeOpcode(OP_PACKET_TYPE_6X, &mode, 1);
}
void sx126x::waitOnBusy() {
unsigned long time = millis();
if (_busy != -1) {
while (digitalRead(_busy) == HIGH) {
if (millis() >= (time + 100)) { break; }
}
}
}
void sx126x::executeOpcode(uint8_t opcode, uint8_t *buffer, uint8_t size) {
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(opcode);
for (int i = 0; i < size; i++) { SPI.transfer(buffer[i]); }
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx126x::executeOpcodeRead(uint8_t opcode, uint8_t *buffer, uint8_t size) {
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(opcode);
SPI.transfer(0x00);
for (int i = 0; i < size; i++) { buffer[i] = SPI.transfer(0x00); }
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx126x::writeBuffer(const uint8_t* buffer, size_t size) {
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(OP_FIFO_WRITE_6X);
SPI.transfer(_fifo_tx_addr_ptr);
for (int i = 0; i < size; i++) { SPI.transfer(buffer[i]); _fifo_tx_addr_ptr++; }
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx126x::readBuffer(uint8_t* buffer, size_t size) {
waitOnBusy();
digitalWrite(_ss, LOW);
SPI.beginTransaction(_spiSettings);
SPI.transfer(OP_FIFO_READ_6X);
SPI.transfer(_fifo_rx_addr_ptr);
SPI.transfer(0x00);
for (int i = 0; i < size; i++) { buffer[i] = SPI.transfer(0x00); }
SPI.endTransaction();
digitalWrite(_ss, HIGH);
}
void sx126x::setModulationParams(uint8_t sf, uint8_t bw, uint8_t cr, int ldro) {
// Because there is no access to these registers on the sx1262, we have
// to set all these parameters at once or not at all.
uint8_t buf[8];
buf[0] = sf;
buf[1] = bw;
buf[2] = cr;
buf[3] = ldro; // Low data rate toggle
buf[4] = 0x00; // Unused params in LoRa mode
buf[5] = 0x00;
buf[6] = 0x00;
buf[7] = 0x00;
executeOpcode(OP_MODULATION_PARAMS_6X, buf, 8);
}
void sx126x::setPacketParams(long preamble_symbols, uint8_t headermode, uint8_t payload_length, uint8_t crc) {
// Because there is no access to these registers on the sx1262, we have
// to set all these parameters at once or not at all.
uint8_t buf[9];
buf[0] = uint8_t((preamble_symbols & 0xFF00) >> 8);
buf[1] = uint8_t((preamble_symbols & 0x00FF));
buf[2] = headermode;
buf[3] = payload_length;
buf[4] = crc;
buf[5] = 0x00; // standard IQ setting (no inversion)
buf[6] = 0x00; // unused params
buf[7] = 0x00;
buf[8] = 0x00;
executeOpcode(OP_PACKET_PARAMS_6X, buf, 9);
}
void sx126x::reset(void) {
if (_reset != -1) {
pinMode(_reset, OUTPUT);
digitalWrite(_reset, LOW);
delay(10);
digitalWrite(_reset, HIGH);
delay(10);
}
}
void sx126x::calibrate(void) {
// Put in STDBY_RC mode before calibration
uint8_t mode_byte = MODE_STDBY_RC_6X;
executeOpcode(OP_STANDBY_6X, &mode_byte, 1);
// Calibrate RC64k, RC13M, PLL, ADC and image
uint8_t calibrate = MASK_CALIBRATE_ALL;
executeOpcode(OP_CALIBRATE_6X, &calibrate, 1);
delay(5);
waitOnBusy();
}
void sx126x::calibrate_image(long frequency) {
uint8_t image_freq[2] = {0};
if (frequency >= 430E6 && frequency <= 440E6) { image_freq[0] = 0x6B; image_freq[1] = 0x6F; }
else if (frequency >= 470E6 && frequency <= 510E6) { image_freq[0] = 0x75; image_freq[1] = 0x81; }
else if (frequency >= 779E6 && frequency <= 787E6) { image_freq[0] = 0xC1; image_freq[1] = 0xC5; }
else if (frequency >= 863E6 && frequency <= 870E6) { image_freq[0] = 0xD7; image_freq[1] = 0xDB; }
else if (frequency >= 902E6 && frequency <= 928E6) { image_freq[0] = 0xE1; image_freq[1] = 0xE9; } // TODO: Allow higher freq calibration
executeOpcode(OP_CALIBRATE_IMAGE_6X, image_freq, 2);
waitOnBusy();
}
int sx126x::begin(long frequency) {
reset();
if (_busy != -1) { pinMode(_busy, INPUT); }
if (!_preinit_done) { if (!preInit()) { return false; } }
if (_rxen != -1) { pinMode(_rxen, OUTPUT); }
calibrate();
calibrate_image(frequency);
enableTCXO();
loraMode();
standby();
// Set sync word
setSyncWord(SYNC_WORD_6X);
#if DIO2_AS_RF_SWITCH
// enable dio2 rf switch
uint8_t byte = 0x01;
executeOpcode(OP_DIO2_RF_CTRL_6X, &byte, 1);
#endif
rxAntEnable();
setFrequency(frequency);
setTxPower(2);
enableCrc();
writeRegister(REG_LNA_6X, 0x96); // Set LNA boost
uint8_t basebuf[2] = {0}; // Set base addresses
executeOpcode(OP_BUFFER_BASE_ADDR_6X, basebuf, 2);
setModulationParams(_sf, _bw, _cr, _ldro);
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
return 1;
}
void sx126x::end() { sleep(); SPI.end(); _preinit_done = false; }
int sx126x::beginPacket(int implicitHeader) {
standby();
if (implicitHeader) { implicitHeaderMode(); }
else { explicitHeaderMode(); }
_payloadLength = 0;
_fifo_tx_addr_ptr = 0;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
return 1;
}
int sx126x::endPacket() {
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
uint8_t timeout[3] = {0}; // Put in single TX mode
executeOpcode(OP_TX_6X, timeout, 3);
uint8_t buf[2];
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2);
// Wait for TX done
bool timed_out = false;
uint32_t w_timeout = millis()+LORA_MODEM_TIMEOUT_MS;
while ((millis() < w_timeout) && ((buf[1] & IRQ_TX_DONE_MASK_6X) == 0)) {
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2);
yield();
}
if (!(millis() < w_timeout)) { timed_out = true; }
// Clear IRQs
uint8_t mask[2];
mask[0] = 0x00;
mask[1] = IRQ_TX_DONE_MASK_6X;
executeOpcode(OP_CLEAR_IRQ_STATUS_6X, mask, 2);
if (timed_out) { return 0; } else { return 1; }
}
unsigned long preamble_detected_at = 0;
extern long lora_preamble_time_ms;
extern long lora_header_time_ms;
bool false_preamble_detected = false;
bool sx126x::dcd() {
uint8_t buf[2] = {0}; executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2);
uint32_t now = millis();
bool header_detected = false;
bool carrier_detected = false;
if ((buf[1] & IRQ_HEADER_DET_MASK_6X) != 0) { header_detected = true; carrier_detected = true; }
else { header_detected = false; }
if ((buf[1] & IRQ_PREAMBLE_DET_MASK_6X) != 0) {
carrier_detected = true;
if (preamble_detected_at == 0) { preamble_detected_at = now; }
if (now - preamble_detected_at > lora_preamble_time_ms + lora_header_time_ms) {
preamble_detected_at = 0;
if (!header_detected) { false_preamble_detected = true; }
uint8_t clearbuf[2] = {0};
clearbuf[1] = IRQ_PREAMBLE_DET_MASK_6X;
executeOpcode(OP_CLEAR_IRQ_STATUS_6X, clearbuf, 2);
}
}
// TODO: Maybe there's a way of unlatching the RSSI
// status without re-activating receive mode?
if (false_preamble_detected) { sx126x_modem.receive(); false_preamble_detected = false; }
return carrier_detected;
}
uint8_t sx126x::currentRssiRaw() {
uint8_t byte = 0;
executeOpcodeRead(OP_CURRENT_RSSI_6X, &byte, 1);
return byte;
}
int ISR_VECT sx126x::currentRssi() {
uint8_t byte = 0;
executeOpcodeRead(OP_CURRENT_RSSI_6X, &byte, 1);
int rssi = -(int(byte)) / 2;
return rssi;
}
uint8_t sx126x::packetRssiRaw() {
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3);
return buf[2];
}
int ISR_VECT sx126x::packetRssi() {
// TODO: May need more calculations here
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3);
int pkt_rssi = -buf[0] / 2;
return pkt_rssi;
}
int ISR_VECT sx126x::packetRssi(uint8_t pkt_snr_raw) {
// TODO: May need more calculations here
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3);
int pkt_rssi = -buf[0] / 2;
return pkt_rssi;
}
uint8_t ISR_VECT sx126x::packetSnrRaw() {
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3);
return buf[1];
}
float ISR_VECT sx126x::packetSnr() {
uint8_t buf[3] = {0};
executeOpcodeRead(OP_PACKET_STATUS_6X, buf, 3);
return float(buf[1]) * 0.25;
}
long sx126x::packetFrequencyError() {
// TODO: Implement this, no idea how to check it on the sx1262
const float fError = 0.0;
return static_cast<long>(fError);
}
size_t sx126x::write(uint8_t byte) { return write(&byte, sizeof(byte)); }
size_t sx126x::write(const uint8_t *buffer, size_t size) {
if ((_payloadLength + size) > MAX_PKT_LENGTH) { size = MAX_PKT_LENGTH - _payloadLength; }
writeBuffer(buffer, size);
_payloadLength = _payloadLength + size;
return size;
}
int ISR_VECT sx126x::available() {
uint8_t buf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, buf, 2);
return buf[0] - _packetIndex;
}
int ISR_VECT sx126x::read(){
if (!available()) { return -1; }
if (_packetIndex == 0) {
uint8_t rxbuf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, rxbuf, 2);
int size = rxbuf[0];
_fifo_rx_addr_ptr = rxbuf[1];
readBuffer(_packet, size);
}
uint8_t byte = _packet[_packetIndex];
_packetIndex++;
return byte;
}
int sx126x::peek() {
if (!available()) { return -1; }
if (_packetIndex == 0) {
uint8_t rxbuf[2] = {0};
executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, rxbuf, 2);
int size = rxbuf[0];
_fifo_rx_addr_ptr = rxbuf[1];
readBuffer(_packet, size);
}
uint8_t b = _packet[_packetIndex];
return b;
}
void sx126x::flush() { }
void sx126x::onReceive(void(*callback)(int)){
_onReceive = callback;
if (callback) {
pinMode(_dio0, INPUT);
uint8_t buf[8]; // Set preamble and header detection irqs, plus dio0 mask
buf[0] = 0xFF; // Set irq masks, enable all
buf[1] = 0xFF;
buf[2] = 0x00; // Set dio0 masks
buf[3] = IRQ_RX_DONE_MASK_6X;
buf[4] = 0x00; // Set dio1 masks
buf[5] = 0x00;
buf[6] = 0x00; // Set dio2 masks
buf[7] = 0x00;
executeOpcode(OP_SET_IRQ_FLAGS_6X, buf, 8);
#ifdef SPI_HAS_NOTUSINGINTERRUPT
SPI.usingInterrupt(digitalPinToInterrupt(_dio0));
#endif
attachInterrupt(digitalPinToInterrupt(_dio0), sx126x::onDio0Rise, RISING);
} else {
detachInterrupt(digitalPinToInterrupt(_dio0));
#ifdef SPI_HAS_NOTUSINGINTERRUPT
SPI.notUsingInterrupt(digitalPinToInterrupt(_dio0));
#endif
}
}
void sx126x::receive(int size) {
if (size > 0) {
implicitHeaderMode();
_payloadLength = size;
setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode);
} else { explicitHeaderMode(); }
if (_rxen != -1) { rxAntEnable(); }
uint8_t mode[3] = {0xFF, 0xFF, 0xFF}; // Continuous mode
executeOpcode(OP_RX_6X, mode, 3);
}
void sx126x::standby() {
uint8_t byte = MODE_STDBY_XOSC_6X; // STDBY_XOSC
executeOpcode(OP_STANDBY_6X, &byte, 1);
}
void sx126x::sleep() { uint8_t byte = 0x00; executeOpcode(OP_SLEEP_6X, &byte, 1); }
void sx126x::enableTCXO() {
#if HAS_TCXO
#if BOARD_MODEL == BOARD_RAK4631 || BOARD_MODEL == BOARD_HELTEC32_V3
uint8_t buf[4] = {MODE_TCXO_3_3V_6X, 0x00, 0x00, 0xFF};
#elif BOARD_MODEL == BOARD_TBEAM
uint8_t buf[4] = {MODE_TCXO_1_8V_6X, 0x00, 0x00, 0xFF};
#elif BOARD_MODEL == BOARD_TDECK
uint8_t buf[4] = {MODE_TCXO_1_8V_6X, 0x00, 0x00, 0xFF};
#elif BOARD_MODEL == BOARD_TBEAM_S_V1
uint8_t buf[4] = {MODE_TCXO_1_8V_6X, 0x00, 0x00, 0xFF};
#elif BOARD_MODEL == BOARD_T3S3
uint8_t buf[4] = {MODE_TCXO_1_8V_6X, 0x00, 0x00, 0xFF};
#elif BOARD_MODEL == BOARD_HELTEC_T114
uint8_t buf[4] = {MODE_TCXO_1_8V_6X, 0x00, 0x00, 0xFF};
#elif BOARD_MODEL == BOARD_TECHO
uint8_t buf[4] = {MODE_TCXO_1_8V_6X, 0x00, 0x00, 0xFF};
#endif
executeOpcode(OP_DIO3_TCXO_CTRL_6X, buf, 4);
#endif
}
// TODO: Once enabled, SX1262 needs a complete reset to disable TCXO
void sx126x::disableTCXO() { }
void sx126x::setTxPower(int level, int outputPin) {
// Currently no low power mode for SX1262 implemented, assuming PA boost
// WORKAROUND - Better Resistance of the SX1262 Tx to Antenna Mismatch, see DS_SX1261-2_V1.2 datasheet chapter 15.2
// RegTxClampConfig = @address 0x08D8
writeRegister(0x08D8, readRegister(0x08D8) | (0x0F << 1));
uint8_t pa_buf[4];
pa_buf[0] = 0x04; // PADutyCycle needs to be 0x04 to achieve 22dBm output, but can be lowered for better efficiency at lower outputs
pa_buf[1] = 0x07; // HPMax at 0x07 is maximum supported for SX1262
pa_buf[2] = 0x00; // DeviceSel 0x00 for SX1262 (0x01 for SX1261)
pa_buf[3] = 0x01; // PALut always 0x01 (reserved according to datasheet)
executeOpcode(OP_PA_CONFIG_6X, pa_buf, 4); // set pa_config for high power
if (level > 22) { level = 22; }
else if (level < -9) { level = -9; }
writeRegister(REG_OCP_6X, OCP_TUNED); // Use board-specific tuned OCP
uint8_t tx_buf[2];
tx_buf[0] = level;
tx_buf[1] = 0x02; // PA ramping time - 40 microseconds
executeOpcode(OP_TX_PARAMS_6X, tx_buf, 2);
_txp = level;
}
uint8_t sx126x::getTxPower() { return _txp; }
void sx126x::setFrequency(long frequency) {
_frequency = frequency;
uint8_t buf[4];
uint32_t freq = (uint32_t)((double)frequency / (double)FREQ_STEP_6X);
buf[0] = ((freq >> 24) & 0xFF);
buf[1] = ((freq >> 16) & 0xFF);
buf[2] = ((freq >> 8) & 0xFF);
buf[3] = (freq & 0xFF);
executeOpcode(OP_RF_FREQ_6X, buf, 4);
}
uint32_t sx126x::getFrequency() {
// We can't read the frequency on the sx1262 / 80
uint32_t frequency = _frequency;
return frequency;
}
void sx126x::setSpreadingFactor(int sf) {
if (sf < 5) { sf = 5; }
else if (sf > 12) { sf = 12; }
_sf = sf;
handleLowDataRate();
setModulationParams(sf, _bw, _cr, _ldro);
}
long sx126x::getSignalBandwidth() {
int bw = _bw;
switch (bw) {
case 0x00: return 7.8E3;
case 0x01: return 15.6E3;
case 0x02: return 31.25E3;
case 0x03: return 62.5E3;
case 0x04: return 125E3;
case 0x05: return 250E3;
case 0x06: return 500E3;
case 0x08: return 10.4E3;
case 0x09: return 20.8E3;
case 0x0A: return 41.7E3;
}
return 0;
}
extern bool lora_low_datarate;
void sx126x::handleLowDataRate() {
if ( long( (1<<_sf) / (getSignalBandwidth()/1000)) > 16)
{ _ldro = 0x01; lora_low_datarate = true; }
else { _ldro = 0x00; lora_low_datarate = false; }
}
// TODO: Check if there's anything the sx1262 can do here
void sx126x::optimizeModemSensitivity(){ }
void sx126x::setSignalBandwidth(long sbw) {
if (sbw <= 7.8E3) { _bw = 0x00; }
else if (sbw <= 10.4E3) { _bw = 0x08; }
else if (sbw <= 15.6E3) { _bw = 0x01; }
else if (sbw <= 20.8E3) { _bw = 0x09; }
else if (sbw <= 31.25E3) { _bw = 0x02; }
else if (sbw <= 41.7E3) { _bw = 0x0A; }
else if (sbw <= 62.5E3) { _bw = 0x03; }
else if (sbw <= 125E3) { _bw = 0x04; }
else if (sbw <= 250E3) { _bw = 0x05; }
else { _bw = 0x06; }
handleLowDataRate();
setModulationParams(_sf, _bw, _cr, _ldro);
optimizeModemSensitivity();
}
void sx126x::setCodingRate4(int denominator) {
if (denominator < 5) { denominator = 5; }
else if (denominator > 8) { denominator = 8; }
int cr = denominator - 4;
_cr = cr;
setModulationParams(_sf, _bw, cr, _ldro);
}
void sx126x::setPreambleLength(long preamble_symbols) {
_preambleLength = preamble_symbols;
setPacketParams(preamble_symbols, _implicitHeaderMode, _payloadLength, _crcMode);
}
void sx126x::setSyncWord(uint16_t sw) {
// TODO: Why was this hardcoded instead of using the config value?
// writeRegister(REG_SYNC_WORD_MSB_6X, (sw & 0xFF00) >> 8);
// writeRegister(REG_SYNC_WORD_LSB_6X, sw & 0x00FF);
writeRegister(REG_SYNC_WORD_MSB_6X, 0x14);
writeRegister(REG_SYNC_WORD_LSB_6X, 0x24);
}
void sx126x::setPins(int ss, int reset, int dio0, int busy, int rxen) {
_ss = ss;
_reset = reset;
_dio0 = dio0;
_busy = busy;
_rxen = rxen;
}
void sx126x::dumpRegisters(Stream& out) {
for (int i = 0; i < 128; i++) {
out.print("0x");
out.print(i, HEX);
out.print(": 0x");
out.println(readRegister(i), HEX);
}
}
void ISR_VECT sx126x::handleDio0Rise() {
uint8_t buf[2];
buf[0] = 0x00;
buf[1] = 0x00;
executeOpcodeRead(OP_GET_IRQ_STATUS_6X, buf, 2);
executeOpcode(OP_CLEAR_IRQ_STATUS_6X, buf, 2);
if ((buf[1] & IRQ_PAYLOAD_CRC_ERROR_MASK_6X) == 0) {
_packetIndex = 0;
uint8_t rxbuf[2] = {0}; // Read packet length
executeOpcodeRead(OP_RX_BUFFER_STATUS_6X, rxbuf, 2);
int packetLength = rxbuf[0];
if (_onReceive) { _onReceive(packetLength); }
}
}
void ISR_VECT sx126x::onDio0Rise() { sx126x_modem.handleDio0Rise(); }
void sx126x::setSPIFrequency(uint32_t frequency) { _spiSettings = SPISettings(frequency, MSBFIRST, SPI_MODE0); }
void sx126x::enableCrc() { _crcMode = 1; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); }
void sx126x::disableCrc() { _crcMode = 0; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); }
void sx126x::explicitHeaderMode() { _implicitHeaderMode = 0; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); }
void sx126x::implicitHeaderMode() { _implicitHeaderMode = 1; setPacketParams(_preambleLength, _implicitHeaderMode, _payloadLength, _crcMode); }
byte sx126x::random() { return readRegister(REG_RANDOM_GEN_6X); }
sx126x sx126x_modem;
#endif