This is a copy of the community maintained fork of the open firmware which powers RNode devices. This version will have support for the hardware made by Mees Electronics.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

663 lines
17 KiB

#include <Arduino.h>
#include <SPI.h>
#include "Utilities.h"
FIFOBuffer serialFIFO;
uint8_t serialBuffer[CONFIG_UART_BUFFER_SIZE+1];
FIFOBuffer16 packet_starts;
size_t packet_starts_buf[CONFIG_QUEUE_MAX_LENGTH+1];
FIFOBuffer16 packet_lengths;
size_t packet_lengths_buf[CONFIG_QUEUE_MAX_LENGTH+1];
uint8_t packet_queue[CONFIG_QUEUE_SIZE];
volatile uint8_t queue_height = 0;
volatile size_t queued_bytes = 0;
volatile size_t queue_cursor = 0;
volatile size_t current_packet_start = 0;
volatile bool serial_buffering = false;
char sbuf[128];
void setup() {
// Seed the PRNG
randomSeed(analogRead(0));
// Initialise serial communication
memset(serialBuffer, 0, sizeof(serialBuffer));
fifo_init(&serialFIFO, serialBuffer, CONFIG_UART_BUFFER_SIZE);
Serial.begin(serial_baudrate);
while (!Serial);
serial_interrupt_init();
// Configure input and output pins
pinMode(pin_led_rx, OUTPUT);
pinMode(pin_led_tx, OUTPUT);
// Initialise buffers
memset(pbuf, 0, sizeof(pbuf));
memset(cbuf, 0, sizeof(cbuf));
memset(packet_queue, 0, sizeof(packet_queue));
memset(packet_starts_buf, 0, sizeof(packet_starts_buf));
fifo16_init(&packet_starts, packet_starts_buf, CONFIG_QUEUE_MAX_LENGTH);
memset(packet_lengths_buf, 0, sizeof(packet_starts_buf));
fifo16_init(&packet_lengths, packet_lengths_buf, CONFIG_QUEUE_MAX_LENGTH);
// Set chip select, reset and interrupt
// pins for the LoRa module
LoRa.setPins(pin_cs, pin_reset, pin_dio);
// Validate board health, EEPROM and config
validateStatus();
}
void lora_receive() {
if (!implicit) {
LoRa.receive();
} else {
LoRa.receive(implicit_l);
}
}
bool startRadio() {
update_radio_lock();
if (!radio_online) {
if (!radio_locked && hw_ready) {
if (!LoRa.begin(lora_freq)) {
// The radio could not be started.
// Indicate this failure over both the
// serial port and with the onboard LEDs
kiss_indicate_error(ERROR_INITRADIO);
led_indicate_error(0);
} else {
radio_online = true;
setTXPower();
setBandwidth();
setSpreadingFactor();
setCodingRate();
getFrequency();
LoRa.enableCrc();
LoRa.onReceive(receiveCallback);
lora_receive();
// Flash an info pattern to indicate
// that the radio is now on
led_indicate_info(3);
}
} else {
// Flash a warning pattern to indicate
// that the radio was locked, and thus
// not started
led_indicate_warning(3);
}
} else {
// If radio is already on, we silently
// ignore the request.
}
}
void stopRadio() {
LoRa.end();
radio_online = false;
}
void update_radio_lock() {
if (lora_freq != 0 && lora_bw != 0 && lora_txp != 0xFF && lora_sf != 0) {
radio_locked = false;
} else {
radio_locked = true;
}
}
void receiveCallback(int packet_size) {
if (!promisc) {
// The standard operating mode allows large
// packets with a payload up to 500 bytes,
// by combining two raw LoRa packets.
// We read the 1-byte header and extract
// packet sequence number and split flags
uint8_t header = LoRa.read(); packet_size--;
uint8_t sequence = packetSequence(header);
bool ready = false;
if (isSplitPacket(header) && seq == SEQ_UNSET) {
// This is the first part of a split
// packet, so we set the seq variable
// and add the data to the buffer
read_len = 0;
seq = sequence;
last_rssi = LoRa.packetRssi();
last_snr_raw = LoRa.packetSnrRaw();
getPacketData(packet_size);
} else if (isSplitPacket(header) && seq == sequence) {
// This is the second part of a split
// packet, so we add it to the buffer
// and set the ready flag.
last_rssi = (last_rssi+LoRa.packetRssi())/2;
last_snr_raw = (last_snr_raw+LoRa.packetSnrRaw())/2;
getPacketData(packet_size);
seq = SEQ_UNSET;
ready = true;
} else if (isSplitPacket(header) && seq != sequence) {
// This split packet does not carry the
// same sequence id, so we must assume
// that we are seeing the first part of
// a new split packet.
read_len = 0;
seq = sequence;
last_rssi = LoRa.packetRssi();
last_snr_raw = LoRa.packetSnrRaw();
getPacketData(packet_size);
} else if (!isSplitPacket(header)) {
// This is not a split packet, so we
// just read it and set the ready
// flag to true.
if (seq != SEQ_UNSET) {
// If we already had part of a split
// packet in the buffer, we clear it.
read_len = 0;
seq = SEQ_UNSET;
}
last_rssi = LoRa.packetRssi();
last_snr_raw = LoRa.packetSnrRaw();
getPacketData(packet_size);
ready = true;
}
if (ready) {
// We first signal the RSSI of the
// recieved packet to the host.
kiss_indicate_stat_rssi();
kiss_indicate_stat_snr();
// And then write the entire packet
Serial.write(FEND);
Serial.write(CMD_DATA);
for (int i = 0; i < read_len; i++) {
uint8_t byte = pbuf[i];
if (byte == FEND) { Serial.write(FESC); byte = TFEND; }
if (byte == FESC) { Serial.write(FESC); byte = TFESC; }
Serial.write(byte);
}
Serial.write(FEND);
read_len = 0;
}
} else {
// In promiscuous mode, raw packets are
// output directly over to the host
read_len = 0;
last_rssi = LoRa.packetRssi();
last_snr_raw = LoRa.packetSnrRaw();
getPacketData(packet_size);
// We first signal the RSSI of the
// recieved packet to the host.
kiss_indicate_stat_rssi();
kiss_indicate_stat_snr();
// And then write the entire packet
Serial.write(FEND);
Serial.write(CMD_DATA);
for (int i = 0; i < read_len; i++) {
uint8_t byte = pbuf[i];
if (byte == FEND) { Serial.write(FESC); byte = TFEND; }
if (byte == FESC) { Serial.write(FESC); byte = TFESC; }
Serial.write(byte);
}
Serial.write(FEND);
read_len = 0;
}
}
bool queueFull() {
return (queue_height >= CONFIG_QUEUE_MAX_LENGTH || queued_bytes >= CONFIG_QUEUE_SIZE);
}
volatile bool queue_flushing = false;
void flushQueue(void) {
if (!queue_flushing) {
queue_flushing = true;
size_t processed = 0;
while (!fifo16_isempty_locked(&packet_starts)) {
size_t start = fifo16_pop(&packet_starts);
size_t length = fifo16_pop(&packet_lengths);
if (length >= MIN_L && length <= MTU) {
for (size_t i = 0; i < length; i++) {
size_t pos = (start+i)%CONFIG_QUEUE_SIZE;
tbuf[i] = packet_queue[pos];
}
transmit(length);
processed++;
}
}
}
queue_height = 0;
queued_bytes = 0;
queue_flushing = false;
}
void transmit(size_t size) {
if (radio_online) {
if (!promisc) {
led_tx_on();
size_t written = 0;
uint8_t header = random(256) & 0xF0;
if (size > SINGLE_MTU - HEADER_L) {
header = header | FLAG_SPLIT;
}
LoRa.beginPacket();
LoRa.write(header); written++;
for (size_t i; i < size; i++) {
LoRa.write(tbuf[i]);
written++;
if (written == 255) {
LoRa.endPacket();
LoRa.beginPacket();
LoRa.write(header);
written = 1;
}
}
LoRa.endPacket();
led_tx_off();
lora_receive();
} else {
// In promiscuous mode, we only send out
// plain raw LoRa packets with a maximum
// payload of 255 bytes
led_tx_on();
size_t written = 0;
// Cap packets at 255 bytes
if (size > SINGLE_MTU) {
size = SINGLE_MTU;
}
// If implicit header mode has been set,
// set packet length to payload data length
if (!implicit) {
LoRa.beginPacket();
} else {
LoRa.beginPacket(size);
}
for (size_t i; i < size; i++) {
LoRa.write(tbuf[i]);
written++;
}
LoRa.endPacket();
led_tx_off();
lora_receive();
}
} else {
kiss_indicate_error(ERROR_TXFAILED);
led_indicate_error(5);
}
}
void serialCallback(uint8_t sbyte) {
if (IN_FRAME && sbyte == FEND && command == CMD_DATA) {
IN_FRAME = false;
if (!fifo16_isfull(&packet_starts) && queued_bytes < CONFIG_QUEUE_SIZE) {
size_t s = current_packet_start;
size_t e = queue_cursor-1; if (e == -1) e = CONFIG_QUEUE_SIZE-1;
size_t l;
if (s != e) {
l = (s < e) ? e - s + 1 : CONFIG_QUEUE_SIZE - s + e + 1;
} else {
l = 1;
}
if (l >= MIN_L) {
queue_height++;
fifo16_push(&packet_starts, s);
fifo16_push(&packet_lengths, l);
current_packet_start = queue_cursor;
}
}
} else if (sbyte == FEND) {
IN_FRAME = true;
command = CMD_UNKNOWN;
frame_len = 0;
} else if (IN_FRAME && frame_len < MTU) {
// Have a look at the command byte first
if (frame_len == 0 && command == CMD_UNKNOWN) {
command = sbyte;
} else if (command == CMD_DATA) {
if (sbyte == FESC) {
ESCAPE = true;
} else {
if (ESCAPE) {
if (sbyte == TFEND) sbyte = FEND;
if (sbyte == TFESC) sbyte = FESC;
ESCAPE = false;
}
if (queue_height < CONFIG_QUEUE_MAX_LENGTH && queued_bytes < CONFIG_QUEUE_SIZE) {
queued_bytes++;
packet_queue[queue_cursor++] = sbyte;
if (queue_cursor == CONFIG_QUEUE_SIZE) queue_cursor = 0;
}
}
} else if (command == CMD_FREQUENCY) {
if (sbyte == FESC) {
ESCAPE = true;
} else {
if (ESCAPE) {
if (sbyte == TFEND) sbyte = FEND;
if (sbyte == TFESC) sbyte = FESC;
ESCAPE = false;
}
cbuf[frame_len++] = sbyte;
}
if (frame_len == 4) {
uint32_t freq = (uint32_t)cbuf[0] << 24 | (uint32_t)cbuf[1] << 16 | (uint32_t)cbuf[2] << 8 | (uint32_t)cbuf[3];
if (freq == 0) {
kiss_indicate_frequency();
} else {
lora_freq = freq;
if (op_mode == MODE_HOST) setFrequency();
kiss_indicate_frequency();
}
}
} else if (command == CMD_BANDWIDTH) {
if (sbyte == FESC) {
ESCAPE = true;
} else {
if (ESCAPE) {
if (sbyte == TFEND) sbyte = FEND;
if (sbyte == TFESC) sbyte = FESC;
ESCAPE = false;
}
cbuf[frame_len++] = sbyte;
}
if (frame_len == 4) {
uint32_t bw = (uint32_t)cbuf[0] << 24 | (uint32_t)cbuf[1] << 16 | (uint32_t)cbuf[2] << 8 | (uint32_t)cbuf[3];
if (bw == 0) {
kiss_indicate_bandwidth();
} else {
lora_bw = bw;
if (op_mode == MODE_HOST) setBandwidth();
kiss_indicate_bandwidth();
}
}
} else if (command == CMD_TXPOWER) {
if (sbyte == 0xFF) {
kiss_indicate_txpower();
} else {
int txp = sbyte;
if (txp > 17) txp = 17;
lora_txp = txp;
if (op_mode == MODE_HOST) setTXPower();
kiss_indicate_txpower();
}
} else if (command == CMD_SF) {
if (sbyte == 0xFF) {
kiss_indicate_spreadingfactor();
} else {
int sf = sbyte;
if (sf < 6) sf = 6;
if (sf > 12) sf = 12;
lora_sf = sf;
if (op_mode == MODE_HOST) setSpreadingFactor();
kiss_indicate_spreadingfactor();
}
} else if (command == CMD_CR) {
if (sbyte == 0xFF) {
kiss_indicate_codingrate();
} else {
int cr = sbyte;
if (cr < 5) cr = 5;
if (cr > 8) cr = 8;
lora_cr = cr;
if (op_mode == MODE_HOST) setCodingRate();
kiss_indicate_codingrate();
}
} else if (command == CMD_IMPLICIT) {
set_implicit_length(sbyte);
kiss_indicate_implicit_length();
} else if (command == CMD_RADIO_STATE) {
if (sbyte == 0xFF) {
kiss_indicate_radiostate();
} else if (sbyte == 0x00) {
stopRadio();
kiss_indicate_radiostate();
} else if (sbyte == 0x01) {
startRadio();
kiss_indicate_radiostate();
}
} else if (command == CMD_STAT_RX) {
kiss_indicate_stat_rx();
} else if (command == CMD_STAT_TX) {
kiss_indicate_stat_tx();
} else if (command == CMD_STAT_RSSI) {
kiss_indicate_stat_rssi();
} else if (command == CMD_RADIO_LOCK) {
update_radio_lock();
kiss_indicate_radio_lock();
} else if (command == CMD_BLINK) {
led_indicate_info(sbyte);
} else if (command == CMD_RANDOM) {
kiss_indicate_random(getRandom());
} else if (command == CMD_DETECT) {
if (sbyte == DETECT_REQ) {
kiss_indicate_detect();
}
} else if (command == CMD_PROMISC) {
if (sbyte == 0x01) {
promisc_enable();
} else if (sbyte == 0x00) {
promisc_disable();
}
kiss_indicate_promisc();
} else if (command == CMD_READY) {
if (!queueFull()) {
kiss_indicate_ready();
} else {
kiss_indicate_not_ready();
}
} else if (command == CMD_UNLOCK_ROM) {
if (sbyte == ROM_UNLOCK_BYTE) {
unlock_rom();
}
} else if (command == CMD_ROM_READ) {
kiss_dump_eeprom();
} else if (command == CMD_ROM_WRITE) {
if (sbyte == FESC) {
ESCAPE = true;
} else {
if (ESCAPE) {
if (sbyte == TFEND) sbyte = FEND;
if (sbyte == TFESC) sbyte = FESC;
ESCAPE = false;
}
cbuf[frame_len++] = sbyte;
}
if (frame_len == 2) {
eeprom_write(cbuf[0], cbuf[1]);
}
} else if (command == CMD_FW_VERSION) {
kiss_indicate_version();
} else if (command == CMD_CONF_SAVE) {
eeprom_conf_save();
} else if (command == CMD_CONF_DELETE) {
eeprom_conf_delete();
}
}
}
void updateModemStatus() {
uint8_t status = LoRa.modemStatus();
last_status_update = millis();
if (status & SIG_DETECT == SIG_DETECT) { stat_signal_detected = true; } else { stat_signal_detected = false; }
if (status & SIG_SYNCED == SIG_SYNCED) { stat_signal_synced = true; } else { stat_signal_synced = false; }
if (status & RX_ONGOING == RX_ONGOING) { stat_rx_ongoing = true; } else { stat_rx_ongoing = false; }
if (stat_signal_detected || stat_signal_synced || stat_rx_ongoing) {
if (dcd_count < dcd_threshold) {
dcd_count++;
dcd = true;
} else {
dcd = true;
dcd_led = true;
}
} else {
if (dcd_count > 0) {
dcd_count--;
} else {
dcd_led = false;
}
dcd = false;
}
if (dcd_led) {
led_rx_on();
} else {
led_rx_off();
}
}
void checkModemStatus() {
if (millis()-last_status_update >= status_interval_ms) {
updateModemStatus();
}
}
void validateStatus() {
if (eeprom_lock_set()) {
if (eeprom_product_valid() && eeprom_model_valid() && eeprom_hwrev_valid()) {
if (eeprom_checksum_valid()) {
hw_ready = true;
if (eeprom_have_conf()) {
eeprom_conf_load();
op_mode = MODE_TNC;
startRadio();
}
}
} else {
hw_ready = false;
}
} else {
hw_ready = false;
}
}
void loop() {
if (radio_online) {
checkModemStatus();
if (queue_height > 0) {
if (!dcd_waiting) updateModemStatus();
if (!dcd && !dcd_led) {
if (dcd_waiting) delay(lora_rx_turnaround_ms);
updateModemStatus();
if (!dcd) {
dcd_waiting = false;
flushQueue();
}
} else {
dcd_waiting = true;
}
}
} else {
if (hw_ready) {
led_indicate_standby();
} else {
led_indicate_not_ready();
stopRadio();
}
}
if (!fifo_isempty_locked(&serialFIFO)) serial_poll();
}
volatile bool serial_polling = false;
void serial_poll() {
serial_polling = true;
while (!fifo_isempty_locked(&serialFIFO)) {
char sbyte = fifo_pop(&serialFIFO);
serialCallback(sbyte);
}
serial_polling = false;
}
#define MAX_CYCLES 20
void buffer_serial() {
if (!serial_buffering) {
serial_buffering = true;
uint8_t c = 0;
while (c < MAX_CYCLES && Serial.available()) {
c++;
if (!fifo_isfull_locked(&serialFIFO)) {
fifo_push_locked(&serialFIFO, Serial.read());
}
}
serial_buffering = false;
}
}
void serial_interrupt_init() {
TCCR3A = 0;
TCCR3B = _BV(CS10) |
_BV(WGM33)|
_BV(WGM32);
// Buffer incoming frames every 1ms
ICR3 = 16000;
TIMSK3 = _BV(ICIE3);
}
ISR(TIMER3_CAPT_vect) {
buffer_serial();
}