You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

951 lines
36 KiB

""" Defines the SX127x class and a few utility functions. """
# -*- coding: utf-8 -*-
# Copyright 2015-2018 Mayer Analytics Ltd.
#
# This file is part of pySX127x.
#
# pySX127x is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public
# License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# pySX127x is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
# warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more
# details.
#
# You can be released from the requirements of the license by obtaining a commercial license. Such a license is
# mandatory as soon as you develop commercial activities involving pySX127x without disclosing the source code of your
# own applications, or shipping pySX127x with a closed source product.
#
# You should have received a copy of the GNU General Public License along with pySX127. If not, see
# <http://www.gnu.org/licenses/>.
import sys
from .constants import *
from .board_config import BOARD
################################################## Some utility functions ##############################################
def set_bit(value, index, new_bit):
""" Set the index'th bit of value to new_bit, and return the new value.
:param value: The integer to set the new_bit in
:type value: int
:param index: 0-based index
:param new_bit: New value the bit shall have (0 or 1)
:return: Changed value
:rtype: int
"""
mask = 1 << index
value &= ~mask
if new_bit:
value |= mask
return value
def getter(register_address):
""" The getter decorator reads the register content and calls the decorated function to do
post-processing.
:param register_address: Register address
:return: Register value
:rtype: int
"""
def decorator(func):
def wrapper(self):
return func(self, self.spi.xfer([register_address, 0])[1])
return wrapper
return decorator
def setter(register_address):
""" The setter decorator calls the decorated function for pre-processing and
then writes the result to the register
:param register_address: Register address
:return: New register value
:rtype: int
"""
def decorator(func):
def wrapper(self, val):
return self.spi.xfer([register_address | 0x80, func(self, val)])[1]
return wrapper
return decorator
############################################### Definition of the LoRa class ###########################################
class LoRa(object):
spi = BOARD.SpiDev() # init and get the baord's SPI
mode = None # the mode is backed up here
backup_registers = []
verbose = True
dio_mapping = [None] * 6 # store the dio mapping here
def __init__(self, verbose=True, do_calibration=True, calibration_freq=868):
""" Init the object
Send the device to sleep, read all registers, and do the calibration (if do_calibration=True)
:param verbose: Set the verbosity True/False
:param calibration_freq: call rx_chain_calibration with this parameter. Default is 868
:param do_calibration: Call rx_chain_calibration, default is True.
"""
self.verbose = verbose
# set the callbacks for DIO0..5 IRQs.
BOARD.add_events(self._dio0, self._dio1, self._dio2, self._dio3, self._dio4, self._dio5)
# set mode to sleep and read all registers
self.set_mode(MODE.SLEEP)
self.backup_registers = self.get_all_registers()
# more setup work:
if do_calibration:
self.rx_chain_calibration(calibration_freq)
# the FSK registers are set up exactly as modtronix do it:
lookup_fsk = [
#[REG.FSK.LNA , 0x23],
#[REG.FSK.RX_CONFIG , 0x1E],
#[REG.FSK.RSSI_CONFIG , 0xD2],
#[REG.FSK.PREAMBLE_DETECT, 0xAA],
#[REG.FSK.OSC , 0x07],
#[REG.FSK.SYNC_CONFIG , 0x12],
#[REG.FSK.SYNC_VALUE_1 , 0xC1],
#[REG.FSK.SYNC_VALUE_2 , 0x94],
#[REG.FSK.SYNC_VALUE_3 , 0xC1],
#[REG.FSK.PACKET_CONFIG_1, 0xD8],
#[REG.FSK.FIFO_THRESH , 0x8F],
#[REG.FSK.IMAGE_CAL , 0x02],
#[REG.FSK.DIO_MAPPING_1 , 0x00],
#[REG.FSK.DIO_MAPPING_2 , 0x30]
]
self.set_mode(MODE.FSK_STDBY)
for register_address, value in lookup_fsk:
self.set_register(register_address, value)
self.set_mode(MODE.SLEEP)
# set the dio_ mapping by calling the two get_dio_mapping_* functions
self.get_dio_mapping_1()
self.get_dio_mapping_2()
# Overridable functions:
def on_rx_done(self):
pass
def on_tx_done(self):
pass
def on_cad_done(self):
pass
def on_rx_timeout(self):
pass
def on_valid_header(self):
pass
def on_payload_crc_error(self):
pass
def on_fhss_change_channel(self):
pass
# Internal callbacks for add_events()
def _dio0(self, channel):
# DIO0 00: RxDone
# DIO0 01: TxDone
# DIO0 10: CadDone
if self.dio_mapping[0] == 0:
self.on_rx_done()
elif self.dio_mapping[0] == 1:
self.on_tx_done()
elif self.dio_mapping[0] == 2:
self.on_cad_done()
else:
raise RuntimeError("unknown dio0mapping!")
def _dio1(self, channel):
# DIO1 00: RxTimeout
# DIO1 01: FhssChangeChannel
# DIO1 10: CadDetected
if self.dio_mapping[1] == 0:
self.on_rx_timeout()
elif self.dio_mapping[1] == 1:
self.on_fhss_change_channel()
elif self.dio_mapping[1] == 2:
self.on_CadDetected()
else:
raise RuntimeError("unknown dio1mapping!")
def _dio2(self, channel):
# DIO2 00: FhssChangeChannel
# DIO2 01: FhssChangeChannel
# DIO2 10: FhssChangeChannel
self.on_fhss_change_channel()
def _dio3(self, channel):
# DIO3 00: CadDone
# DIO3 01: ValidHeader
# DIO3 10: PayloadCrcError
if self.dio_mapping[3] == 0:
self.on_cad_done()
elif self.dio_mapping[3] == 1:
self.on_valid_header()
elif self.dio_mapping[3] == 2:
self.on_payload_crc_error()
else:
raise RuntimeError("unknown dio3 mapping!")
def _dio4(self, channel):
raise RuntimeError("DIO4 is not used")
def _dio5(self, channel):
raise RuntimeError("DIO5 is not used")
# All the set/get/read/write functions
def get_mode(self):
""" Get the mode
:return: New mode
"""
self.mode = self.spi.xfer([REG.LORA.OP_MODE, 0])[1]
return self.mode
def set_mode(self, mode):
""" Set the mode
:param mode: Set the mode. Use constants.MODE class
:return: New mode
"""
# the mode is backed up in self.mode
if mode == self.mode:
return mode
if self.verbose:
sys.stderr.write("Mode <- %s\n" % MODE.lookup[mode])
self.mode = mode
return self.spi.xfer([REG.LORA.OP_MODE | 0x80, mode])[1]
def write_payload(self, payload):
""" Get FIFO ready for TX: Set FifoAddrPtr to FifoTxBaseAddr. The transceiver is put into STDBY mode.
:param payload: Payload to write (list)
:return: Written payload
"""
payload_size = len(payload)
self.set_payload_length(payload_size)
self.set_mode(MODE.STDBY)
base_addr = self.get_fifo_tx_base_addr()
self.set_fifo_addr_ptr(base_addr)
return self.spi.xfer([REG.LORA.FIFO | 0x80] + payload)[1:]
def reset_ptr_rx(self):
""" Get FIFO ready for RX: Set FifoAddrPtr to FifoRxBaseAddr. The transceiver is put into STDBY mode. """
self.set_mode(MODE.STDBY)
base_addr = self.get_fifo_rx_base_addr()
self.set_fifo_addr_ptr(base_addr)
def rx_is_good(self):
""" Check the IRQ flags for RX errors
:return: True if no errors
:rtype: bool
"""
flags = self.get_irq_flags()
return not any([flags[s] for s in ['valid_header', 'crc_error', 'rx_done', 'rx_timeout']])
def read_payload(self , nocheck = False):
""" Read the payload from FIFO
:param nocheck: If True then check rx_is_good()
:return: Payload
:rtype: list[int]
"""
if not nocheck and not self.rx_is_good():
return None
rx_nb_bytes = self.get_rx_nb_bytes()
fifo_rx_current_addr = self.get_fifo_rx_current_addr()
self.set_fifo_addr_ptr(fifo_rx_current_addr)
payload = self.spi.xfer([REG.LORA.FIFO] + [0] * rx_nb_bytes)[1:]
return payload
def get_freq(self):
""" Get the frequency (MHz)
:return: Frequency in MHz
:rtype: float
"""
msb, mid, lsb = self.spi.xfer([REG.LORA.FR_MSB, 0, 0, 0])[1:]
f = lsb + 256*(mid + 256*msb)
return f / 16384.
def set_freq(self, f):
""" Set the frequency (MHz)
:param f: Frequency in MHz
"type f: float
:return: New register settings (3 bytes [msb, mid, lsb])
:rtype: list[int]
"""
assert self.mode == MODE.SLEEP or self.mode == MODE.STDBY or self.mode == MODE.FSK_STDBY
i = int(f * 16384.) # choose floor
msb = i // 65536
i -= msb * 65536
mid = i // 256
i -= mid * 256
lsb = i
return self.spi.xfer([REG.LORA.FR_MSB | 0x80, msb, mid, lsb])
def get_pa_config(self, convert_dBm=False):
v = self.spi.xfer([REG.LORA.PA_CONFIG, 0])[1]
pa_select = v >> 7
max_power = v >> 4 & 0b111
output_power = v & 0b1111
if convert_dBm:
max_power = max_power * .6 + 10.8
output_power = max_power - (15 - output_power)
return dict(
pa_select = pa_select,
max_power = max_power,
output_power = output_power
)
def set_pa_config(self, pa_select=None, max_power=None, output_power=None):
""" Configure the PA
:param pa_select: Selects PA output pin, 0->RFO, 1->PA_BOOST
:param max_power: Select max output power Pmax=10.8+0.6*MaxPower
:param output_power: Output power Pout=Pmax-(15-OutputPower) if PaSelect = 0,
Pout=17-(15-OutputPower) if PaSelect = 1 (PA_BOOST pin)
:return: new register value
"""
loc = locals()
current = self.get_pa_config()
loc = {s: current[s] if loc[s] is None else loc[s] for s in loc}
val = (loc['pa_select'] << 7) | (loc['max_power'] << 4) | (loc['output_power'])
return self.spi.xfer([REG.LORA.PA_CONFIG | 0x80, val])[1]
@getter(REG.LORA.PA_RAMP)
def get_pa_ramp(self, val):
return val & 0b1111
@setter(REG.LORA.PA_RAMP)
def set_pa_ramp(self, val):
return val & 0b1111
def get_ocp(self, convert_mA=False):
v = self.spi.xfer([REG.LORA.OCP, 0])[1]
ocp_on = v >> 5 & 0x01
ocp_trim = v & 0b11111
if convert_mA:
if ocp_trim <= 15:
ocp_trim = 45. + 5. * ocp_trim
elif ocp_trim <= 27:
ocp_trim = -30. + 10. * ocp_trim
else:
assert ocp_trim <= 27
return dict(
ocp_on = ocp_on,
ocp_trim = ocp_trim
)
def set_ocp_trim(self, I_mA):
assert(I_mA >= 45 and I_mA <= 240)
ocp_on = self.spi.xfer([REG.LORA.OCP, 0])[1] >> 5 & 0x01
if I_mA <= 120:
v = int(round((I_mA-45.)/5.))
else:
v = int(round((I_mA+30.)/10.))
v = set_bit(v, 5, ocp_on)
return self.spi.xfer([REG.LORA.OCP | 0x80, v])[1]
def get_lna(self):
v = self.spi.xfer([REG.LORA.LNA, 0])[1]
return dict(
lna_gain = v >> 5,
lna_boost_lf = v >> 3 & 0b11,
lna_boost_hf = v & 0b11
)
def set_lna(self, lna_gain=None, lna_boost_lf=None, lna_boost_hf=None):
assert lna_boost_hf is None or lna_boost_hf == 0b00 or lna_boost_hf == 0b11
self.set_mode(MODE.STDBY)
if lna_gain is not None:
# Apparently agc_auto_on must be 0 in order to set lna_gain
self.set_agc_auto_on(lna_gain == GAIN.NOT_USED)
loc = locals()
current = self.get_lna()
loc = {s: current[s] if loc[s] is None else loc[s] for s in loc}
val = (loc['lna_gain'] << 5) | (loc['lna_boost_lf'] << 3) | (loc['lna_boost_hf'])
retval = self.spi.xfer([REG.LORA.LNA | 0x80, val])[1]
if lna_gain is not None:
# agc_auto_on must track lna_gain: GAIN=NOT_USED -> agc_auto=ON, otherwise =OFF
self.set_agc_auto_on(lna_gain == GAIN.NOT_USED)
return retval
def set_lna_gain(self, lna_gain):
self.set_lna(lna_gain=lna_gain)
def get_fifo_addr_ptr(self):
return self.spi.xfer([REG.LORA.FIFO_ADDR_PTR, 0])[1]
def set_fifo_addr_ptr(self, ptr):
return self.spi.xfer([REG.LORA.FIFO_ADDR_PTR | 0x80, ptr])[1]
def get_fifo_tx_base_addr(self):
return self.spi.xfer([REG.LORA.FIFO_TX_BASE_ADDR, 0])[1]
def set_fifo_tx_base_addr(self, ptr):
return self.spi.xfer([REG.LORA.FIFO_TX_BASE_ADDR | 0x80, ptr])[1]
def get_fifo_rx_base_addr(self):
return self.spi.xfer([REG.LORA.FIFO_RX_BASE_ADDR, 0])[1]
def set_fifo_rx_base_addr(self, ptr):
return self.spi.xfer([REG.LORA.FIFO_RX_BASE_ADDR | 0x80, ptr])[1]
def get_fifo_rx_current_addr(self):
return self.spi.xfer([REG.LORA.FIFO_RX_CURR_ADDR, 0])[1]
def get_fifo_rx_byte_addr(self):
return self.spi.xfer([REG.LORA.FIFO_RX_BYTE_ADDR, 0])[1]
def get_irq_flags_mask(self):
v = self.spi.xfer([REG.LORA.IRQ_FLAGS_MASK, 0])[1]
return dict(
rx_timeout = v >> 7 & 0x01,
rx_done = v >> 6 & 0x01,
crc_error = v >> 5 & 0x01,
valid_header = v >> 4 & 0x01,
tx_done = v >> 3 & 0x01,
cad_done = v >> 2 & 0x01,
fhss_change_ch = v >> 1 & 0x01,
cad_detected = v >> 0 & 0x01,
)
def set_irq_flags_mask(self,
rx_timeout=None, rx_done=None, crc_error=None, valid_header=None, tx_done=None,
cad_done=None, fhss_change_ch=None, cad_detected=None):
loc = locals()
v = self.spi.xfer([REG.LORA.IRQ_FLAGS_MASK, 0])[1]
for i, s in enumerate(['cad_detected', 'fhss_change_ch', 'cad_done', 'tx_done', 'valid_header',
'crc_error', 'rx_done', 'rx_timeout']):
this_bit = locals()[s]
if this_bit is not None:
v = set_bit(v, i, this_bit)
return self.spi.xfer([REG.LORA.IRQ_FLAGS_MASK | 0x80, v])[1]
def get_irq_flags(self):
v = self.spi.xfer([REG.LORA.IRQ_FLAGS, 0])[1]
return dict(
rx_timeout = v >> 7 & 0x01,
rx_done = v >> 6 & 0x01,
crc_error = v >> 5 & 0x01,
valid_header = v >> 4 & 0x01,
tx_done = v >> 3 & 0x01,
cad_done = v >> 2 & 0x01,
fhss_change_ch = v >> 1 & 0x01,
cad_detected = v >> 0 & 0x01,
)
def set_irq_flags(self,
rx_timeout=None, rx_done=None, crc_error=None, valid_header=None, tx_done=None,
cad_done=None, fhss_change_ch=None, cad_detected=None):
v = self.spi.xfer([REG.LORA.IRQ_FLAGS, 0])[1]
for i, s in enumerate(['cad_detected', 'fhss_change_ch', 'cad_done', 'tx_done', 'valid_header',
'crc_error', 'rx_done', 'rx_timeout']):
this_bit = locals()[s]
if this_bit is not None:
v = set_bit(v, i, this_bit)
return self.spi.xfer([REG.LORA.IRQ_FLAGS | 0x80, v])[1]
def clear_irq_flags(self,
RxTimeout=None, RxDone=None, PayloadCrcError=None,
ValidHeader=None, TxDone=None, CadDone=None,
FhssChangeChannel=None, CadDetected=None):
v = 0
for i, s in enumerate(['CadDetected', 'FhssChangeChannel', 'CadDone',
'TxDone', 'ValidHeader', 'PayloadCrcError',
'RxDone', 'RxTimeout']):
this_bit = locals()[s]
if this_bit is not None:
v = set_bit(v, eval('MASK.IRQ_FLAGS.' + s), this_bit)
return self.spi.xfer([REG.LORA.IRQ_FLAGS | 0x80, v])[1]
def get_rx_nb_bytes(self):
return self.spi.xfer([REG.LORA.RX_NB_BYTES, 0])[1]
def get_rx_header_cnt(self):
msb, lsb = self.spi.xfer([REG.LORA.RX_HEADER_CNT_MSB, 0, 0])[1:]
return lsb + 256 * msb
def get_rx_packet_cnt(self):
msb, lsb = self.spi.xfer([REG.LORA.RX_PACKET_CNT_MSB, 0, 0])[1:]
return lsb + 256 * msb
def get_modem_status(self):
status = self.spi.xfer([REG.LORA.MODEM_STAT, 0])[1]
return dict(
rx_coding_rate = status >> 5 & 0x03,
modem_clear = status >> 4 & 0x01,
header_info_valid = status >> 3 & 0x01,
rx_ongoing = status >> 2 & 0x01,
signal_sync = status >> 1 & 0x01,
signal_detected = status >> 0 & 0x01
)
def get_pkt_snr_value(self):
v = self.spi.xfer([REG.LORA.PKT_SNR_VALUE, 0])[1]
return (float(v-256) if v > 127 else float(v)) / 4.
def get_pkt_rssi_value(self):
v = self.spi.xfer([REG.LORA.PKT_RSSI_VALUE, 0])[1]
return v - (164 if BOARD.low_band else 157) # See datasheet 5.5.5. p. 87
def get_rssi_value(self):
v = self.spi.xfer([REG.LORA.RSSI_VALUE, 0])[1]
return v - (164 if BOARD.low_band else 157) # See datasheet 5.5.5. p. 87
def get_hop_channel(self):
v = self.spi.xfer([REG.LORA.HOP_CHANNEL, 0])[1]
return dict(
pll_timeout = v >> 7,
crc_on_payload = v >> 6 & 0x01,
fhss_present_channel = v >> 5 & 0b111111
)
def get_modem_config_1(self):
val = self.spi.xfer([REG.LORA.MODEM_CONFIG_1, 0])[1]
return dict(
bw = val >> 4 & 0x0F,
coding_rate = val >> 1 & 0x07,
implicit_header_mode = val & 0x01
)
def set_modem_config_1(self, bw=None, coding_rate=None, implicit_header_mode=None):
loc = locals()
current = self.get_modem_config_1()
loc = {s: current[s] if loc[s] is None else loc[s] for s in loc}
val = loc['implicit_header_mode'] | (loc['coding_rate'] << 1) | (loc['bw'] << 4)
return self.spi.xfer([REG.LORA.MODEM_CONFIG_1 | 0x80, val])[1]
def set_bw(self, bw):
""" Set the bandwidth 0=7.8kHz ... 9=500kHz
:param bw: A number 0,2,3,...,9
:return:
"""
self.set_modem_config_1(bw=bw)
def set_coding_rate(self, coding_rate):
""" Set the coding rate 4/5, 4/6, 4/7, 4/8
:param coding_rate: A number 1,2,3,4
:return: New register value
"""
self.set_modem_config_1(coding_rate=coding_rate)
def set_implicit_header_mode(self, implicit_header_mode):
self.set_modem_config_1(implicit_header_mode=implicit_header_mode)
def get_modem_config_2(self, include_symb_timout_lsb=False):
val = self.spi.xfer([REG.LORA.MODEM_CONFIG_2, 0])[1]
d = dict(
spreading_factor = val >> 4 & 0x0F,
tx_cont_mode = val >> 3 & 0x01,
rx_crc = val >> 2 & 0x01,
)
if include_symb_timout_lsb:
d['symb_timout_lsb'] = val & 0x03
return d
def set_modem_config_2(self, spreading_factor=None, tx_cont_mode=None, rx_crc=None):
loc = locals()
# RegModemConfig2 contains the SymbTimout MSB bits. We tack the back on when writing this register.
current = self.get_modem_config_2(include_symb_timout_lsb=True)
loc = {s: current[s] if loc[s] is None else loc[s] for s in loc}
val = (loc['spreading_factor'] << 4) | (loc['tx_cont_mode'] << 3) | (loc['rx_crc'] << 2) | current['symb_timout_lsb']
return self.spi.xfer([REG.LORA.MODEM_CONFIG_2 | 0x80, val])[1]
def set_spreading_factor(self, spreading_factor):
self.set_modem_config_2(spreading_factor=spreading_factor)
def set_rx_crc(self, rx_crc):
self.set_modem_config_2(rx_crc=rx_crc)
def get_modem_config_3(self):
val = self.spi.xfer([REG.LORA.MODEM_CONFIG_3, 0])[1]
return dict(
low_data_rate_optim = val >> 3 & 0x01,
agc_auto_on = val >> 2 & 0x01
)
def set_modem_config_3(self, low_data_rate_optim=None, agc_auto_on=None):
loc = locals()
current = self.get_modem_config_3()
loc = {s: current[s] if loc[s] is None else loc[s] for s in loc}
val = (loc['low_data_rate_optim'] << 3) | (loc['agc_auto_on'] << 2)
return self.spi.xfer([REG.LORA.MODEM_CONFIG_3 | 0x80, val])[1]
@setter(REG.LORA.INVERT_IQ)
def set_invert_iq(self, invert):
""" Invert the LoRa I and Q signals
:param invert: 0: normal mode, 1: I and Q inverted
:return: New value of register
"""
return 0x27 | (invert & 0x01) << 6
@getter(REG.LORA.INVERT_IQ)
def get_invert_iq(self, val):
""" Get the invert the I and Q setting
:return: 0: normal mode, 1: I and Q inverted
"""
return (val >> 6) & 0x01
def get_agc_auto_on(self):
return self.get_modem_config_3()['agc_auto_on']
def set_agc_auto_on(self, agc_auto_on):
self.set_modem_config_3(agc_auto_on=agc_auto_on)
def get_low_data_rate_optim(self):
return self.set_modem_config_3()['low_data_rate_optim']
def set_low_data_rate_optim(self, low_data_rate_optim):
self.set_modem_config_3(low_data_rate_optim=low_data_rate_optim)
def get_symb_timeout(self):
SYMB_TIMEOUT_MSB = REG.LORA.MODEM_CONFIG_2
msb, lsb = self.spi.xfer([SYMB_TIMEOUT_MSB, 0, 0])[1:] # the MSB bits are stored in REG.LORA.MODEM_CONFIG_2
msb = msb & 0b11
return lsb + 256 * msb
def set_symb_timeout(self, timeout):
bkup_reg_modem_config_2 = self.spi.xfer([REG.LORA.MODEM_CONFIG_2, 0])[1]
msb = timeout >> 8 & 0b11 # bits 8-9
lsb = timeout - 256 * msb # bits 0-7
reg_modem_config_2 = bkup_reg_modem_config_2 & 0xFC | msb # bits 2-7 of bkup_reg_modem_config_2 ORed with the two msb bits
old_msb = self.spi.xfer([REG.LORA.MODEM_CONFIG_2 | 0x80, reg_modem_config_2])[1] & 0x03
old_lsb = self.spi.xfer([REG.LORA.SYMB_TIMEOUT_LSB | 0x80, lsb])[1]
return old_lsb + 256 * old_msb
def get_preamble(self):
msb, lsb = self.spi.xfer([REG.LORA.PREAMBLE_MSB, 0, 0])[1:]
return lsb + 256 * msb
def set_preamble(self, preamble):
msb = preamble >> 8
lsb = preamble - msb * 256
old_msb, old_lsb = self.spi.xfer([REG.LORA.PREAMBLE_MSB | 0x80, msb, lsb])[1:]
return old_lsb + 256 * old_msb
@getter(REG.LORA.PAYLOAD_LENGTH)
def get_payload_length(self, val):
return val
@setter(REG.LORA.PAYLOAD_LENGTH)
def set_payload_length(self, payload_length):
return payload_length
@getter(REG.LORA.MAX_PAYLOAD_LENGTH)
def get_max_payload_length(self, val):
return val
@setter(REG.LORA.MAX_PAYLOAD_LENGTH)
def set_max_payload_length(self, max_payload_length):
return max_payload_length
@getter(REG.LORA.HOP_PERIOD)
def get_hop_period(self, val):
return val
@setter(REG.LORA.HOP_PERIOD)
def set_hop_period(self, hop_period):
return hop_period
def get_fei(self):
msb, mid, lsb = self.spi.xfer([REG.LORA.FEI_MSB, 0, 0, 0])[1:]
msb &= 0x0F
freq_error = lsb + 256 * (mid + 256 * msb)
return freq_error
@getter(REG.LORA.DETECT_OPTIMIZE)
def get_detect_optimize(self, val):
""" Get LoRa detection optimize setting
:return: detection optimize setting 0x03: SF7-12, 0x05: SF6
"""
return val & 0b111
@setter(REG.LORA.DETECT_OPTIMIZE)
def set_detect_optimize(self, detect_optimize):
""" Set LoRa detection optimize
:param detect_optimize 0x03: SF7-12, 0x05: SF6
:return: New register value
"""
assert detect_optimize == 0x03 or detect_optimize == 0x05
return detect_optimize & 0b111
@getter(REG.LORA.DETECTION_THRESH)
def get_detection_threshold(self, val):
""" Get LoRa detection threshold setting
:return: detection threshold 0x0A: SF7-12, 0x0C: SF6
"""
return val
@setter(REG.LORA.DETECTION_THRESH)
def set_detection_threshold(self, detect_threshold):
""" Set LoRa detection optimize
:param detect_threshold 0x0A: SF7-12, 0x0C: SF6
:return: New register value
"""
assert detect_threshold == 0x0A or detect_threshold == 0x0C
return detect_threshold
@getter(REG.LORA.SYNC_WORD)
def get_sync_word(self, sync_word):
return sync_word
@setter(REG.LORA.SYNC_WORD)
def set_sync_word(self, sync_word):
return sync_word
@getter(REG.LORA.DIO_MAPPING_1)
def get_dio_mapping_1(self, mapping):
""" Get mapping of pins DIO0 to DIO3. Object variable dio_mapping will be set.
:param mapping: Register value
:type mapping: int
:return: Value of the mapping list
:rtype: list[int]
"""
self.dio_mapping = [mapping>>6 & 0x03, mapping>>4 & 0x03, mapping>>2 & 0x03, mapping>>0 & 0x03] \
+ self.dio_mapping[4:6]
return self.dio_mapping
@setter(REG.LORA.DIO_MAPPING_1)
def set_dio_mapping_1(self, mapping):
""" Set mapping of pins DIO0 to DIO3. Object variable dio_mapping will be set.
:param mapping: Register value
:type mapping: int
:return: New value of the register
:rtype: int
"""
self.dio_mapping = [mapping>>6 & 0x03, mapping>>4 & 0x03, mapping>>2 & 0x03, mapping>>0 & 0x03] \
+ self.dio_mapping[4:6]
return mapping
@getter(REG.LORA.DIO_MAPPING_2)
def get_dio_mapping_2(self, mapping):
""" Get mapping of pins DIO4 to DIO5. Object variable dio_mapping will be set.
:param mapping: Register value
:type mapping: int
:return: Value of the mapping list
:rtype: list[int]
"""
self.dio_mapping = self.dio_mapping[0:4] + [mapping>>6 & 0x03, mapping>>4 & 0x03]
return self.dio_mapping
@setter(REG.LORA.DIO_MAPPING_2)
def set_dio_mapping_2(self, mapping):
""" Set mapping of pins DIO4 to DIO5. Object variable dio_mapping will be set.
:param mapping: Register value
:type mapping: int
:return: New value of the register
:rtype: int
"""
assert mapping & 0b00001110 == 0
self.dio_mapping = self.dio_mapping[0:4] + [mapping>>6 & 0x03, mapping>>4 & 0x03]
return mapping
def get_dio_mapping(self):
""" Utility function that returns the list of current DIO mappings. Object variable dio_mapping will be set.
:return: List of current DIO mappings
:rtype: list[int]
"""
self.get_dio_mapping_1()
return self.get_dio_mapping_2()
def set_dio_mapping(self, mapping):
""" Utility function that returns the list of current DIO mappings. Object variable dio_mapping will be set.
:param mapping: DIO mapping list
:type mapping: list[int]
:return: New DIO mapping list
:rtype: list[int]
"""
mapping_1 = (mapping[0] & 0x03) << 6 | (mapping[1] & 0x03) << 4 | (mapping[2] & 0x3) << 2 | mapping[3] & 0x3
mapping_2 = (mapping[4] & 0x03) << 6 | (mapping[5] & 0x03) << 4
self.set_dio_mapping_1(mapping_1)
return self.set_dio_mapping_2(mapping_2)
@getter(REG.LORA.VERSION)
def get_version(self, version):
""" Version code of the chip.
Bits 7-4 give the full revision number; bits 3-0 give the metal mask revision number.
:return: Version code
:rtype: int
"""
return version
@getter(REG.LORA.TCXO)
def get_tcxo(self, tcxo):
""" Get TCXO or XTAL input setting
0 -> "XTAL": Crystal Oscillator with external Crystal
1 -> "TCXO": External clipped sine TCXO AC-connected to XTA pin
:param tcxo: 1=TCXO or 0=XTAL input setting
:return: TCXO or XTAL input setting
:type: int (0 or 1)
"""
return tcxo & 0b00010000
@setter(REG.LORA.TCXO)
def set_tcxo(self, tcxo):
""" Make TCXO or XTAL input setting.
0 -> "XTAL": Crystal Oscillator with external Crystal
1 -> "TCXO": External clipped sine TCXO AC-connected to XTA pin
:param tcxo: 1=TCXO or 0=XTAL input setting
:return: new TCXO or XTAL input setting
"""
return (tcxo >= 1) << 4 | 0x09 # bits 0-3 must be 0b1001
@getter(REG.LORA.PA_DAC)
def get_pa_dac(self, pa_dac):
""" Enables the +20dBm option on PA_BOOST pin
False -> Default value
True -> +20dBm on PA_BOOST when OutputPower=1111
:return: True/False if +20dBm option on PA_BOOST on/off
:rtype: bool
"""
pa_dac &= 0x07 # only bits 0-2
if pa_dac == 0x04:
return False
elif pa_dac == 0x07:
return True
else:
raise RuntimeError("Bad PA_DAC value %s" % hex(pa_dac))
@setter(REG.LORA.PA_DAC)
def set_pa_dac(self, pa_dac):
""" Enables the +20dBm option on PA_BOOST pin
False -> Default value
True -> +20dBm on PA_BOOST when OutputPower=1111
:param pa_dac: 1/0 if +20dBm option on PA_BOOST on/off
:return: New pa_dac register value
:rtype: int
"""
return 0x87 if pa_dac else 0x84
def rx_chain_calibration(self, freq=868.):
""" Run the image calibration (see Semtech documentation section 4.2.3.8)
:param freq: Frequency for the HF calibration
:return: None
"""
# backup some registers
op_mode_bkup = self.get_mode()
pa_config_bkup = self.get_register(REG.LORA.PA_CONFIG)
freq_bkup = self.get_freq()
# for image calibration device must be in FSK standby mode
self.set_mode(MODE.FSK_STDBY)
# cut the PA
self.set_register(REG.LORA.PA_CONFIG, 0x00)
# calibration for the LF band
image_cal = (self.get_register(REG.FSK.IMAGE_CAL) & 0xBF) | 0x40
self.set_register(REG.FSK.IMAGE_CAL, image_cal)
while (self.get_register(REG.FSK.IMAGE_CAL) & 0x20) == 0x20:
pass
# Set a Frequency in HF band
self.set_freq(freq)
# calibration for the HF band
image_cal = (self.get_register(REG.FSK.IMAGE_CAL) & 0xBF) | 0x40
self.set_register(REG.FSK.IMAGE_CAL, image_cal)
while (self.get_register(REG.FSK.IMAGE_CAL) & 0x20) == 0x20:
pass
# put back the saved parameters
self.set_mode(op_mode_bkup)
self.set_register(REG.LORA.PA_CONFIG, pa_config_bkup)
self.set_freq(freq_bkup)
def dump_registers(self):
""" Returns a list of [reg_addr, reg_name, reg_value] tuples. Chip is put into mode SLEEP.
:return: List of [reg_addr, reg_name, reg_value] tuples
:rtype: list[tuple]
"""
self.set_mode(MODE.SLEEP)
values = self.get_all_registers()
skip_set = set([REG.LORA.FIFO])
result_list = []
for i, s in REG.LORA.lookup.iteritems():
if i in skip_set:
continue
v = values[i]
result_list.append((i, s, v))
return result_list
def get_register(self, register_address):
return self.spi.xfer([register_address & 0x7F, 0])[1]
def set_register(self, register_address, val):
return self.spi.xfer([register_address | 0x80, val])[1]
def get_all_registers(self):
# read all registers
reg = [0] + self.spi.xfer([1]+[0]*0x3E)[1:]
self.mode = reg[1]
return reg
def __del__(self):
self.set_mode(MODE.SLEEP)
if self.verbose:
sys.stderr.write("MODE=SLEEP\n")
def __str__(self):
# don't use __str__ while in any mode other that SLEEP or STDBY
assert(self.mode == MODE.SLEEP or self.mode == MODE.STDBY)
onoff = lambda i: 'ON' if i else 'OFF'
f = self.get_freq()
cfg1 = self.get_modem_config_1()
cfg2 = self.get_modem_config_2()
cfg3 = self.get_modem_config_3()
pa_config = self.get_pa_config(convert_dBm=True)
ocp = self.get_ocp(convert_mA=True)
lna = self.get_lna()
s = "SX127x LoRa registers:\n"
s += " mode %s\n" % MODE.lookup[self.get_mode()]
s += " freq %f MHz\n" % f
s += " coding_rate %s\n" % CODING_RATE.lookup[cfg1['coding_rate']]
s += " bw %s\n" % BW.lookup[cfg1['bw']]
s += " spreading_factor %s chips/symb\n" % (1 << cfg2['spreading_factor'])
s += " implicit_hdr_mode %s\n" % onoff(cfg1['implicit_header_mode'])
s += " rx_payload_crc %s\n" % onoff(cfg2['rx_crc'])
s += " tx_cont_mode %s\n" % onoff(cfg2['tx_cont_mode'])
s += " preamble %d\n" % self.get_preamble()
s += " low_data_rate_opti %s\n" % onoff(cfg3['low_data_rate_optim'])
s += " agc_auto_on %s\n" % onoff(cfg3['agc_auto_on'])
s += " symb_timeout %s\n" % self.get_symb_timeout()
s += " freq_hop_period %s\n" % self.get_hop_period()
s += " hop_channel %s\n" % self.get_hop_channel()
s += " payload_length %s\n" % self.get_payload_length()
s += " max_payload_length %s\n" % self.get_max_payload_length()
s += " irq_flags_mask %s\n" % self.get_irq_flags_mask()
s += " irq_flags %s\n" % self.get_irq_flags()
s += " rx_nb_byte %d\n" % self.get_rx_nb_bytes()
s += " rx_header_cnt %d\n" % self.get_rx_header_cnt()
s += " rx_packet_cnt %d\n" % self.get_rx_packet_cnt()
s += " pkt_snr_value %f\n" % self.get_pkt_snr_value()
s += " pkt_rssi_value %d\n" % self.get_pkt_rssi_value()
s += " rssi_value %d\n" % self.get_rssi_value()
s += " fei %d\n" % self.get_fei()
s += " pa_select %s\n" % PA_SELECT.lookup[pa_config['pa_select']]
s += " max_power %f dBm\n" % pa_config['max_power']
s += " output_power %f dBm\n" % pa_config['output_power']
s += " ocp %s\n" % onoff(ocp['ocp_on'])
s += " ocp_trim %f mA\n" % ocp['ocp_trim']
s += " lna_gain %s\n" % GAIN.lookup[lna['lna_gain']]
s += " lna_boost_lf %s\n" % bin(lna['lna_boost_lf'])
s += " lna_boost_hf %s\n" % bin(lna['lna_boost_hf'])
s += " detect_optimize %#02x\n" % self.get_detect_optimize()
s += " detection_thresh %#02x\n" % self.get_detection_threshold()
s += " sync_word %#02x\n" % self.get_sync_word()
s += " dio_mapping 0..5 %s\n" % self.get_dio_mapping()
s += " tcxo %s\n" % ['XTAL', 'TCXO'][self.get_tcxo()]
s += " pa_dac %s\n" % ['default', 'PA_BOOST'][self.get_pa_dac()]
s += " fifo_addr_ptr %#02x\n" % self.get_fifo_addr_ptr()
s += " fifo_tx_base_addr %#02x\n" % self.get_fifo_tx_base_addr()
s += " fifo_rx_base_addr %#02x\n" % self.get_fifo_rx_base_addr()
s += " fifo_rx_curr_addr %#02x\n" % self.get_fifo_rx_current_addr()
s += " fifo_rx_byte_addr %#02x\n" % self.get_fifo_rx_byte_addr()
s += " status %s\n" % self.get_modem_status()
s += " version %#02x\n" % self.get_version()
return s