This project is a collection of former (and some new) projects connected together to make an APRS digipeater, which doubles as an APRS weather station, with PE1RXF telemetry server capabilities.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

546 lines
19 KiB

#include <string.h>
#include "AFSK.h"
#include "util/time.h"
extern volatile ticks_t _clock;
extern unsigned long custom_preamble;
extern unsigned long custom_tail;
bool hw_afsk_dac_isr = false;
bool hw_5v_ref = false;
Afsk *AFSK_modem;
// Forward declerations
int afsk_getchar(FILE *strem);
int afsk_putchar(char c, FILE *stream);
void AFSK_hw_refDetect(void) {
// This is manual for now
#if ADC_REFERENCE == REF_5V
hw_5v_ref = true;
#else
hw_5v_ref = false;
#endif
}
void AFSK_hw_init(void) {
// Set up ADC
AFSK_hw_refDetect();
TCCR1A = 0;
TCCR1B = _BV(CS10) | _BV(WGM13) | _BV(WGM12);
ICR1 = (((CPU_FREQ+FREQUENCY_CORRECTION)) / 9600) - 1;
if (hw_5v_ref) {
ADMUX = _BV(REFS0) | 0;
} else {
ADMUX = 0;
}
ADC_DDR &= ~_BV(0);
ADC_PORT &= ~_BV(0);
DIDR0 |= _BV(0);
ADCSRB = _BV(ADTS2) |
_BV(ADTS1) |
_BV(ADTS0);
ADCSRA = _BV(ADEN) |
_BV(ADSC) |
_BV(ADATE)|
_BV(ADIE) |
_BV(ADPS2);
AFSK_DAC_INIT();
LED_TX_INIT();
LED_RX_INIT();
}
void AFSK_init(Afsk *afsk) {
// Allocate modem struct memory
memset(afsk, 0, sizeof(*afsk));
AFSK_modem = afsk;
// Set phase increment
afsk->phaseInc = MARK_INC;
afsk->silentSamples = 0;
// Initialise FIFO buffers
fifo_init(&afsk->delayFifo, (uint8_t *)afsk->delayBuf, sizeof(afsk->delayBuf));
fifo_init(&afsk->rxFifo, afsk->rxBuf, sizeof(afsk->rxBuf));
fifo_init(&afsk->txFifo, afsk->txBuf, sizeof(afsk->txBuf));
// Fill delay FIFO with zeroes
for (int i = 0; i<SAMPLESPERBIT / 2; i++) {
fifo_push(&afsk->delayFifo, 0);
}
AFSK_hw_init();
// Set up streams
FILE afsk_fd = FDEV_SETUP_STREAM(afsk_putchar, afsk_getchar, _FDEV_SETUP_RW);
afsk->fd = afsk_fd;
}
static void AFSK_txStart(Afsk *afsk) {
if (!afsk->sending) {
afsk->phaseInc = MARK_INC;
afsk->phaseAcc = 0;
afsk->bitstuffCount = 0;
afsk->sending = true;
afsk->sending_data = true;
LED_TX_ON();
afsk->preambleLength = DIV_ROUND(custom_preamble * BITRATE, 8000);
AFSK_DAC_IRQ_START();
}
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
afsk->tailLength = DIV_ROUND(custom_tail * BITRATE, 8000);
}
}
int afsk_putchar(char c, FILE *stream) {
AFSK_txStart(AFSK_modem);
while(fifo_isfull_locked(&AFSK_modem->txFifo)) { /* Wait */ }
fifo_push_locked(&AFSK_modem->txFifo, c);
return 1;
}
int afsk_getchar(FILE *stream) {
if (fifo_isempty_locked(&AFSK_modem->rxFifo)) {
return EOF;
} else {
return fifo_pop_locked(&AFSK_modem->rxFifo);
}
}
void AFSK_transmit(char *buffer, size_t size) {
fifo_flush(&AFSK_modem->txFifo);
int i = 0;
while (size--) {
afsk_putchar(buffer[i++], NULL);
}
}
uint8_t AFSK_dac_isr(Afsk *afsk) {
if (afsk->sampleIndex == 0) {
if (afsk->txBit == 0) {
if (fifo_isempty(&afsk->txFifo) && afsk->tailLength == 0) {
AFSK_DAC_IRQ_STOP();
afsk->sending = false;
afsk->sending_data = false;
LED_TX_OFF();
return 0;
} else {
if (!afsk->bitStuff) afsk->bitstuffCount = 0;
afsk->bitStuff = true;
if (afsk->preambleLength == 0) {
if (fifo_isempty(&afsk->txFifo)) {
afsk->sending_data = false;
afsk->tailLength--;
afsk->currentOutputByte = HDLC_FLAG;
} else {
afsk->currentOutputByte = fifo_pop(&afsk->txFifo);
}
} else {
afsk->preambleLength--;
afsk->currentOutputByte = HDLC_FLAG;
}
if (afsk->currentOutputByte == LLP_ESC) {
if (fifo_isempty(&afsk->txFifo)) {
AFSK_DAC_IRQ_STOP();
afsk->sending = false;
LED_TX_OFF();
return 0;
} else {
afsk->currentOutputByte = fifo_pop(&afsk->txFifo);
}
} else if (afsk->currentOutputByte == HDLC_FLAG || afsk->currentOutputByte == HDLC_RESET) {
afsk->bitStuff = false;
}
}
afsk->txBit = 0x01;
}
if (afsk->bitStuff && afsk->bitstuffCount >= BIT_STUFF_LEN) {
afsk->bitstuffCount = 0;
afsk->phaseInc = SWITCH_TONE(afsk->phaseInc);
} else {
if (afsk->currentOutputByte & afsk->txBit) {
afsk->bitstuffCount++;
} else {
afsk->bitstuffCount = 0;
afsk->phaseInc = SWITCH_TONE(afsk->phaseInc);
}
afsk->txBit <<= 1;
}
afsk->sampleIndex = SAMPLESPERBIT;
}
afsk->phaseAcc += afsk->phaseInc;
afsk->phaseAcc %= SIN_LEN;
afsk->sampleIndex--;
return sinSample(afsk->phaseAcc);
}
static bool hdlcParse(Hdlc *hdlc, bool bit, FIFOBuffer *fifo) {
// Initialise a return value. We start with the
// assumption that all is going to end well :)
bool ret = true;
// Bitshift our byte of demodulated bits to
// the left by one bit, to make room for the
// next incoming bit
hdlc->demodulatedBits <<= 1;
// And then put the newest bit from the
// demodulator into the byte.
hdlc->demodulatedBits |= bit ? 1 : 0;
// Now we'll look at the last 8 received bits, and
// check if we have received a HDLC flag (01111110)
if (hdlc->demodulatedBits == HDLC_FLAG) {
// If we have, check that our output buffer is
// not full.
if (!fifo_isfull(fifo)) {
// If it isn't, we'll push the HDLC_FLAG into
// the buffer and indicate that we are now
// receiving data. For bling we also turn
// on the RX LED.
fifo_push(fifo, HDLC_FLAG);
hdlc->receiving = true;
if (hdlc->dcd_count < DCD_MIN_COUNT) {
hdlc->dcd = false;
hdlc->dcd_count++;
} else {
hdlc->dcd = true;
}
#if OPEN_SQUELCH == false
LED_RX_ON();
#endif
} else {
// If the buffer is full, we have a problem
// and abort by setting the return value to
// false and stopping the here.
ret = false;
hdlc->receiving = false;
hdlc->dcd = false;
hdlc->dcd_count = 0;
}
// Everytime we receive a HDLC_FLAG, we reset the
// storage for our current incoming byte and bit
// position in that byte. This effectively
// synchronises our parsing to the start and end
// of the received bytes.
hdlc->currentByte = 0;
hdlc->bitIndex = 0;
return ret;
}
// Check if we have received a RESET flag (01111111)
// In this comparison we also detect when no transmission
// (or silence) is taking place, and the demodulator
// returns an endless stream of zeroes. Due to the NRZ-S
// coding, the actual bits send to this function will
// be an endless stream of ones, which this AND operation
// will also detect.
if ((hdlc->demodulatedBits & HDLC_RESET) == HDLC_RESET) {
// If we have, something probably went wrong at the
// transmitting end, and we abort the reception.
hdlc->receiving = false;
hdlc->dcd = false;
hdlc->dcd_count = 0;
return ret;
}
// Check the DCD status and set RX LED appropriately
if (hdlc->dcd) {
LED_RX_ON();
} else {
LED_RX_OFF();
}
// If we have not yet seen a HDLC_FLAG indicating that
// a transmission is actually taking place, don't bother
// with anything.
if (!hdlc->receiving) {
hdlc->dcd = false;
hdlc->dcd_count = 0;
return ret;
}
// First check if what we are seeing is a stuffed bit.
// Since the different HDLC control characters like
// HDLC_FLAG, HDLC_RESET and such could also occur in
// a normal data stream, we employ a method known as
// "bit stuffing". All control characters have more than
// 5 ones in a row, so if the transmitting party detects
// this sequence in the _data_ to be transmitted, it inserts
// a zero to avoid the receiving party interpreting it as
// a control character. Therefore, if we detect such a
// "stuffed bit", we simply ignore it and wait for the
// next bit to come in.
//
// We do the detection by applying an AND bit-mask to the
// stream of demodulated bits. This mask is 00111111 (0x3f)
// if the result of the operation is 00111110 (0x3e), we
// have detected a stuffed bit.
if ((hdlc->demodulatedBits & 0x3f) == 0x3e)
return ret;
// If we have an actual 1 bit, push this to the current byte
// If it's a zero, we don't need to do anything, since the
// bit is initialized to zero when we bitshifted earlier.
if (hdlc->demodulatedBits & 0x01)
hdlc->currentByte |= 0x80;
// Increment the bitIndex and check if we have a complete byte
if (++hdlc->bitIndex >= 8) {
// If we have a HDLC control character, put a AX.25 escape
// in the received data. We know we need to do this,
// because at this point we must have already seen a HDLC
// flag, meaning that this control character is the result
// of a bitstuffed byte that is equal to said control
// character, but is actually part of the data stream.
// By inserting the escape character, we tell the protocol
// layer that this is not an actual control character, but
// data.
if ((hdlc->currentByte == HDLC_FLAG ||
hdlc->currentByte == HDLC_RESET ||
hdlc->currentByte == LLP_ESC)) {
// We also need to check that our received data buffer
// is not full before putting more data in
if (!fifo_isfull(fifo)) {
fifo_push(fifo, LLP_ESC);
} else {
// If it is, abort and return false
hdlc->receiving = false;
hdlc->dcd = false;
hdlc->dcd_count = 0;
LED_RX_OFF();
ret = false;
}
}
// Push the actual byte to the received data FIFO,
// if it isn't full.
if (!fifo_isfull(fifo)) {
fifo_push(fifo, hdlc->currentByte);
} else {
// If it is, well, you know by now!
hdlc->receiving = false;
hdlc->dcd = false;
hdlc->dcd_count = 0;
LED_RX_OFF();
ret = false;
}
// Wipe received byte and reset bit index to 0
hdlc->currentByte = 0;
hdlc->bitIndex = 0;
} else {
// We don't have a full byte yet, bitshift the byte
// to make room for the next bit
hdlc->currentByte >>= 1;
}
return ret;
}
void AFSK_adc_isr(Afsk *afsk, int8_t currentSample) {
// To determine the received frequency, and thereby
// the bit of the sample, we multiply the sample by
// a sample delayed by (samples per bit / 2).
// We then lowpass-filter the samples with a
// Chebyshev filter. The lowpass filtering serves
// to "smooth out" the variations in the samples.
afsk->iirX[0] = afsk->iirX[1];
#if FILTER_CUTOFF == 600
afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) >> 2;
// The above is a simplification of:
// afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) / 3.558147322;
#elif FILTER_CUTOFF == 800
afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) >> 2;
// The above is a simplification of:
// afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) / 2.899043379;
#elif FILTER_CUTOFF == 1200
afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) >> 1;
// The above is a simplification of:
// afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) / 2.228465666;
#elif FILTER_CUTOFF == 1600
afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) >> 1;
// The above is a simplification of:
// afsk->iirX[1] = ((int8_t)fifo_pop(&afsk->delayFifo) * currentSample) / 1.881349100;
#else
#error Unsupported filter cutoff!
#endif
afsk->iirY[0] = afsk->iirY[1];
#if FILTER_CUTOFF == 600
afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] >> 1);
// The above is a simplification of a first-order 600Hz chebyshev filter:
// afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] * 0.4379097269);
#elif FILTER_CUTOFF == 800
afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] / 3);
// The above is a simplification of a first-order 800Hz chebyshev filter:
// afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] * 0.3101172565);
#elif FILTER_CUTOFF == 1200
afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] / 10);
// The above is a simplification of a first-order 1200Hz chebyshev filter:
// afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] * 0.1025215106);
#elif FILTER_CUTOFF == 1600
afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + -1*(afsk->iirY[0] / 17);
// The above is a simplification of a first-order 1600Hz chebyshev filter:
// afsk->iirY[1] = afsk->iirX[0] + afsk->iirX[1] + (afsk->iirY[0] * -0.0630669239);
#else
#error Unsupported filter cutoff!
#endif
// We put the sampled bit in a delay-line:
// First we bitshift everything 1 left
afsk->sampledBits <<= 1;
// And then add the sampled bit to our delay line
afsk->sampledBits |= (afsk->iirY[1] > 0) ? 0 : 1;
// Put the current raw sample in the delay FIFO
fifo_push(&afsk->delayFifo, currentSample);
// We need to check whether there is a signal transition.
// If there is, we can recalibrate the phase of our
// sampler to stay in sync with the transmitter. A bit of
// explanation is required to understand how this works.
// Since we have PHASE_MAX/PHASE_BITS = 8 samples per bit,
// we employ a phase counter (currentPhase), that increments
// by PHASE_BITS everytime a sample is captured. When this
// counter reaches PHASE_MAX, it wraps around by modulus
// PHASE_MAX. We then look at the last three samples we
// captured and determine if the bit was a one or a zero.
//
// This gives us a "window" looking into the stream of
// samples coming from the ADC. Sort of like this:
//
// Past Future
// 0000000011111111000000001111111100000000
// |________|
// ||
// Window
//
// Every time we detect a signal transition, we adjust
// where this window is positioned a little. How much we
// adjust it is defined by PHASE_INC. If our current phase
// phase counter value is less than half of PHASE_MAX (ie,
// the window size) when a signal transition is detected,
// add PHASE_INC to our phase counter, effectively moving
// the window a little bit backward (to the left in the
// illustration), inversely, if the phase counter is greater
// than half of PHASE_MAX, we move it forward a little.
// This way, our "window" is constantly seeking to position
// it's center at the bit transitions. Thus, we synchronise
// our timing to the transmitter, even if it's timing is
// a little off compared to our own.
if (SIGNAL_TRANSITIONED(afsk->sampledBits)) {
if (afsk->currentPhase < PHASE_THRESHOLD) {
afsk->currentPhase += PHASE_INC;
} else {
afsk->currentPhase -= PHASE_INC;
}
afsk->silentSamples = 0;
} else {
afsk->silentSamples++;
}
// We increment our phase counter
afsk->currentPhase += PHASE_BITS;
// Check if we have reached the end of
// our sampling window.
if (afsk->currentPhase >= PHASE_MAX) {
// If we have, wrap around our phase
// counter by modulus
afsk->currentPhase %= PHASE_MAX;
// Bitshift to make room for the next
// bit in our stream of demodulated bits
afsk->actualBits <<= 1;
// We determine the actual bit value by reading
// the last 3 sampled bits. If there is two or
// more 1's, we will assume that the transmitter
// sent us a one, otherwise we assume a zero
uint8_t bits = afsk->sampledBits & 0x07;
if (bits == 0x07 || // 111
bits == 0x06 || // 110
bits == 0x05 || // 101
bits == 0x03 // 011
) {
afsk->actualBits |= 1;
}
//// Alternative using five bits ////////////////
// uint8_t bits = afsk->sampledBits & 0x0f;
// uint8_t c = 0;
// c += bits & BV(1);
// c += bits & BV(2);
// c += bits & BV(3);
// c += bits & BV(4);
// c += bits & BV(5);
// if (c >= 3) afsk->actualBits |= 1;
/////////////////////////////////////////////////
// Now we can pass the actual bit to the HDLC parser.
// We are using NRZ-S coding, so if 2 consecutive bits
// have the same value, we have a 1, otherwise a 0.
// We use the TRANSITION_FOUND function to determine this.
//
// This is smart in combination with bit stuffing,
// since it ensures a transmitter will never send more
// than five consecutive 1's. When sending consecutive
// ones, the signal stays at the same level, and if
// this happens for longer periods of time, we would
// not be able to synchronize our phase to the transmitter
// and would start experiencing "bit slip".
//
// By combining bit-stuffing with NRZ-S coding, we ensure
// that the signal will regularly make transitions
// that we can use to synchronize our phase.
//
// We also check the return of the Link Control parser
// to check if an error occured.
if (!hdlcParse(&afsk->hdlc, !TRANSITION_FOUND(afsk->actualBits), &afsk->rxFifo)) {
afsk->status |= 1;
if (fifo_isfull(&afsk->rxFifo)) {
fifo_flush(&afsk->rxFifo);
afsk->status = 0;
}
}
}
if (afsk->silentSamples > DCD_TIMEOUT_SAMPLES) {
afsk->silentSamples = 0;
afsk->hdlc.dcd = false;
LED_RX_OFF();
}
}
ISR(ADC_vect) {
TIFR1 = _BV(ICF1);
AFSK_adc_isr(AFSK_modem, ((int16_t)((ADC) >> 2) - 128));
if (hw_afsk_dac_isr) {
DAC_PORT = (AFSK_dac_isr(AFSK_modem) & 0xF0) | _BV(3);
} else {
DAC_PORT = 128;
}
++_clock;
}