# A LoRa KISS TNC for APRS

#### M.T. Konstapel

#### 2022-05-18

#### Abstract

The traditional FSK based 1200bd APRS used in conjunction with analogue FM transceivers is still going strong, but APRS over LoRa is gaining in popularity. Unfortunately, most existing modems are stand alone trackers and iGates. These are convenient as they do not need any external hardware, but integrating these modems in existing digipeatersetups is a challenge. That is why I decided to design a LoRa modem with a standardized KISS interface over USB. This modem can, for example, be connected to a computer running APRX on Linux (eg. an existing 2 meter APRS digipeater). Simply attach the modem with *kissattach* to the Linux AX.25 stack and you now have a cross band APRS digipeater without any hassle.

### 1 The design

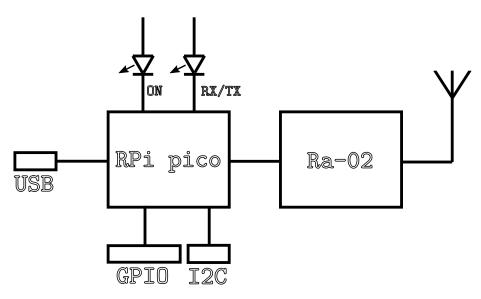



Figure 1: block diagram of the modem

Figure 1 shows the block diagram of the modem. It is basically two blobs attached to each other. The controller is a Raspberry Pi Pico and the radio is a 433MHz Ra-02 module, which is a LoRa module based around an SX1278 chip.

A couple of LEDs provide some status indication, like POWER ON, RX and TX. The I2C-interface as well as six GPIO-pins are available on two headers. These are not used by the default firmware, but could be utilized by altering this firmware yourself.

### 2 The firmware



Figure 2: block diagram of firmware

### 2.1 LoRa APRS

A typical LoRa APRS frame is just a string of ASCII characters. And that's a bit of a problem as this is not quite what the original AX.25 standard<sup>1</sup> describes as a valid AX.25 frame. The firmware has to convert the APRS string to a proper AX.25 frame.

#### 2.2 AX.25 APRS

The conversion, of course, goes both ways. From LoRa APRS to AX.25 and from AX.25 to LoRa APRS. Before converting from LoRa APRS to AX.25 some error checking is done as frames could be corrupted in transit.

#### 2.3 KISS

 $Kiss^2$  is stupidly simple: send two bytes (0xC0 0x00), than just send the AX.25 frame and end with one byte: 0xC0. The AX.25 frame has to be escaped, because any 0xC0 value in it is seen as an end of frame.

#### 2.4 USB

The KISS frames are send to the host over the USB interface. The host can simply attach the interface to the AX.25 stack via *kissattach* or attach it directly to APRX via the APRX configuration file.

### 3 Configuration

The modem can be configured via a serial terminal program like *minicom*. Exit from KISS mode with command *kissparm*  $-p \ ax0 \ -x$  (assuming the modem is attached to ax0) and kill the kissattach process. Than start minicom (19200bd 8N1). When finished you can go back to KISS mode with command *kiss 1* or you can power cycle the modem.

<sup>&</sup>lt;sup>1</sup>http://www.ax25.net/AX25.2.2-Jul%2098-2.pdf

<sup>&</sup>lt;sup>2</sup>https://en.wikipedia.org/wiki/KISS\_(TNC)

| All commands that alter settings write to RAM. After a reboot, these set- |
|---------------------------------------------------------------------------|
| tings are lost, unless the settings are saved to FLASH.                   |

| System commands |                                   |                          |  |  |  |
|-----------------|-----------------------------------|--------------------------|--|--|--|
| command         | parameter                         | description              |  |  |  |
| read            | ram                               | read settings from RAM   |  |  |  |
|                 | flash                             | read settings from FLASH |  |  |  |
| save            | save - Save RAM settings to FLASH |                          |  |  |  |
| kiss            | 1                                 | Switch to KISS mode      |  |  |  |

| LoRa commands |           |                                                           |  |  |  |
|---------------|-----------|-----------------------------------------------------------|--|--|--|
| command       | parameter | description                                               |  |  |  |
| freq          | Herz      | Set lora frequency (limited between 420MHz and 450MHz)    |  |  |  |
| spread        | value     | Set lora spreading factor (can be between 6 and 12)       |  |  |  |
| pre           | value     | Set lora preamble (can be between $6$ and $65535$ )       |  |  |  |
| rate          | value     | Set lora coding rate (can be between $5 \text{ and } 8$ ) |  |  |  |
| power         | dBm       | Set lora tx power (can be between $2$ and $17$ )          |  |  |  |
| pa            | 0/1       | Set PA on or off                                          |  |  |  |
| band          | value     | Set lora bandwidth (can be between 7800 and 500000)       |  |  |  |
| restart       | -         | Restart radio (do this after altering LoRa settings)      |  |  |  |

| Stand alone commands (not used in KISS mode) |                       |                                |  |  |  |
|----------------------------------------------|-----------------------|--------------------------------|--|--|--|
| command                                      | parameter description |                                |  |  |  |
| mycall                                       | CALL-x                | Set call and ssid of modem     |  |  |  |
| servercall                                   | CALL-x                | Set call and ssid of server    |  |  |  |
| path 1                                       | PATH                  | Set first path or leave blank  |  |  |  |
| path 2                                       | PATH                  | Set second path or leave blank |  |  |  |
| dest                                         | ID                    | Set destination                |  |  |  |

Table 1: request packet

## 4 Practical notes

### 4.1 Build the pcb

Building the printed circuit board is straight forward. The design files are made with KiCad 5.1.8 and scaled PDF files of the printed circuit board are available. The pcb has two layers and can be made by yourself or ordered from a pcb manufacturer. When etched yourself, there are no plated through vias. All ground connections, as well as some other connections, should be soldered on both sides of the pcb.

# A Full schematic

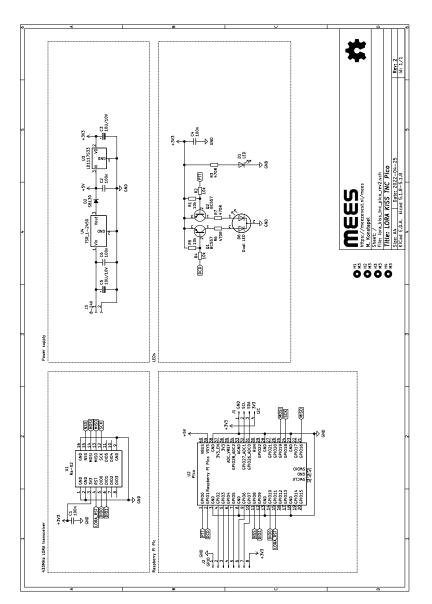



Figure 3: full schematic of the modem

# **B** Component placement

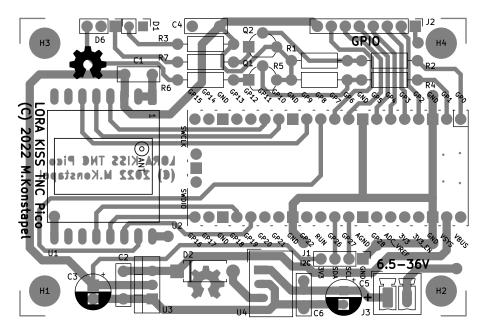



Figure 4: component placement

# C Component placement 3D view

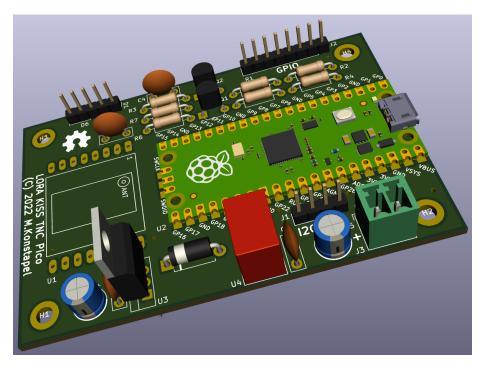
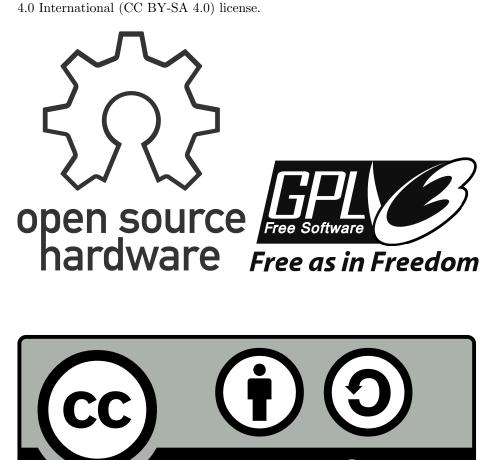



Figure 5: 3d view


# D Bill of material

| Quantity | Reference   | Value      | Manufacturer         | Ordering #              | Conrad #     |
|----------|-------------|------------|----------------------|-------------------------|--------------|
| 4        | C1 C2 C4 C6 | 100n       | QPL                  | 100n/50V 5mm            |              |
| 2        | C3 C5       | 10U/10V    | QPL                  | 10U/25V 2.5mm           |              |
| 1        | D1          | LED        | QPL                  | Pin header 1x2 2.54mm   |              |
| 1        | D2          | SB130      | Vishay               | SB130                   | 164828 - 62  |
| 1        | D6          | Dual LED   | QPL                  | Pin header 1x3 2.54mm   |              |
| 4        | H1 H2 H3 H4 | M3         | Not a placeable part | -                       |              |
| 1        | J1          | I2C        | QPL                  | Pin header 1x4 2.54mm   |              |
| 1        | J2          | GPIO       | QPL                  | Pin header 1x8 2.54mm   |              |
| 1        | J3          | 8-24V      | Degson               | DG381-3.5-02P-14-00AH-1 | 1327243 - 62 |
| 2        | Q1 Q2       | BC557      | QPL                  | BC557                   |              |
| 4        | R1 R2 R4 R5 | 10k        | QPL                  | 10k 1% 0.25W            |              |
| 3        | R3 R6 R7    | 470R       | QPL                  | 470R 1% 0.25W           |              |
| 1        | U1          | Ra-02      | Thinker              | Ra-02                   |              |
| 1        | U2          | Pico       | Raspberry Pi         | Pico                    |              |
| 1        | U3          | LD1117S33  | STMicroelectronics   | LD1117V33               | 147028 - 62  |
| 1        | U4          | TSR_1-2450 | TracoPower           | TSR 1-2450              | 156673 - 62  |

Figure 6: bill of material

## E Open source hardware and software

All the design files are available on my website: https://www.meezenest.nl/mees This document is published under the Creative Commons Attribution-ShareAlike

