
Weather station
with ModBus RTU interface

M.T. Konstapel

2024-01-22

Abstract

A weather station build around a SparkFun Weather Meter Kit (SEN-15901). The temperature, humidity
and pressure are measured with I2C sensors housed in an RS1 Passive Radiation Shield from Garni. The data
can be read via an RS485 ModBus RTU interface. The main processor is an Arduino Pro Mini (ATmega328P
5V@16MHz)

Contents
1 Why do you need a weather station? 2

2 What should a weather station measure? 2
2.0.1 Measurements . 2

3 What sensors do we need? 2
3.1 Wind and rain . 2
3.2 Temperature, humidity and air pressure . 3

3.2.1 Sensors . 4

4 What to use for communication with the outside world? 4
4.1 ModBus . 4

5 What else? 4

6 Theory of operation - Hardware 4
6.1 Wind speed . 4
6.2 Wind direction . 5
6.3 Rain fall . 7
6.4 Humidity . 8
6.5 Temperature . 9
6.6 Atmospheric pressure . 9
6.7 Illumination . 10
6.8 ModBus interface . 10
6.9 I²C bus . 10
6.10 Power supply . 11

6.10.1 Input protection . 11
6.11 Microcontroller . 12

7 Theory of operation - Software 12
7.1 Wind speed . 12
7.2 Wind direction . 13
7.3 Rain fall . 13
7.4 Humidity . 13
7.5 Temperature . 14
7.6 Atmospheric pressure . 14
7.7 Illumination . 14
7.8 ModBus interface . 15

7.8.1 Input registers (read only) . 15

1

7.8.2 Output coils (write only) . 15

8 Prototype 16

9 Specifications 18
9.1 Wind . 18
9.2 Rain . 18
9.3 Humidity . 18
9.4 Pressure . 18
9.5 Temperature . 18
9.6 ModBus . 19

10 Schematic 19

11 Software dependencies 19
11.1 Arduino libraries . 19

12 License 19
12.1 Software . 19
12.2 Hardware and documentation . 20

1 Why do you need a weather station?
Well, you don’t…because if you want to know the weather, you look on your phone. So why bother than? Because
since the beginning of time, people are obsessed with the weather. When I was a child, my grandmother was
measuring the temperature and rainfall on a daily basis. My grandfather had an allotment, so he also was very
interested in the weather. The first thing my father read in the newspaper was the weather report and the last
thing he watched on the television was… the weather report. And every hour he listed to the weather report on
the radio. If he talked to someone he always started the conversation by talking about the weather. And when
I open a new browser window, it automatically opens the weather page.

So the weather is fascinating and taking your own measurements is a lot of fun.

2 What should a weather station measure?
As my grandmother already measured temperature and rainfall, these ones are mandatory. And for the rest I
looked at the website of the Dutch meteorological institute. They measure wind direction, average wind speed
of the last 10 minutes, maximum wind gust of the last 10 minutes, rainfall of the last hour as well as the last
24 hours, temperature, humidity and atmospheric pressure.

2.0.1 Measurements

• Wind direction
• Wind speed (average of last 10 minutes)
• Wind gust (last 10 minutes)
• Rain fall (last hour)
• Rain fall (last 24 hours)
• Temperature
• Humidity
• Atmospheric pressure

3 What sensors do we need?
3.1 Wind and rain
Measuring wind and rain is difficult. Well, not if you want to do it by hand: place a beaker on the ground and
wait a day. Than measure the amount of water in it. Empty the beaker and start again. And for the wind, you
can stick a pole in the ground and attach a ribbon to it. The direction of the wind can than be made visible.
And even the wind speed can be determent by measuring the angle between the ribbon and the ground.

2

But how to do this automatically? Of course you can buy a fancy commercial weather station. These are
surprisingly cheap these days. But that’s not a challenge. Besides, than you buy into a proprietary ecosystem.
And it probably only works when connected to the cloud. No thanks!

Building from scratch is an option, but I am an electronic engineer, not a mechanical one. I can imagine that
won’t be a success. Besides going the professional route, which is ridiculously expensive, there is really only one
option left: the SparkFun SEN-15901 Weather Meter.

Figure 1: SparkFun Weather Meter

But this contraption does not come with any signal conditioning. We have to make some kind of interface.
Luckily, Sparkfun provides an Arduino library, so we only have to connect the SEN-15901 to an Arduino and
run the code.

3.2 Temperature, humidity and air pressure
These three are easy: there are a lot of I2C chips capable of measuring these parameters. I choose the Silicon
Labs Si7021 for humidity and temperature and the Bosch BMP280 for pressure. Just hook them up to the
Arduino’s I2C bus, load the available libraries and Bob’s your uncle.

To mount these sensors on the same mast as the SparkFun weather meter I use the RS1 passive radiation shield
from Garni.

Figure 2: Garni RS1 Passive Radiation Shield

3

3.2.1 Sensors

• SparkFun SEN-15901 Weather Station
• Silicon Labs Si7021
• Bosch BMP280

4 What to use for communication with the outside world?
Most consumer grade weather stations (and almost all other consumer grade goods for that matter) use propri-
etary interfaces and protocols. Probably to annoy the more technical skilled customer as you are not able to
interface these devices with other brands or self build systems. I really hate that practice, so I won’t do that.
Instead I will implement a ModBus RTU interface. Dating back to 1979, this is the industrial standard for
communication between devices. And if the professionals all use it, why not use it for this weather station?

4.1 ModBus
ModBus is a client/server data communications protocol in the application layer of the OSI model. ModBus can
work over several different physical interfaces. For this application I will use an RS-485 interface. This interface
is easy to implement and cables can be very long, making it easy to locate the weather station. ModBus
is a lightweight protocol which can comfortably fit inside an under-powered micro-controller like an Atmel
ATmega328P. A simple RS-485 to USB dongle connected to a PC is all you need to read the values from the
weather station.

5 What else?
Not much to be honest. Almost everything can be done in software. Of course we need a power supply. And
preferably a reverse polarity protection. An input voltage of 12 Volt is convenient. 12 Volt power bricks can be
found in every charity shop and you can also use a 12 Volt lead acid or lithium battery to power the weather
station.

6 Theory of operation - Hardware

wind speed

wind direction

rain fall

humidity

pressure

temperature

ModBus

Micro-controller

Figure 3: Block diagram of weather station

6.1 Wind speed
Measuring the wind speed is done by a cup anemometer. It consisted of three or four hemispherical cups on
horizontal arms mounted on a vertical shaft. The air flow past the cups in any horizontal direction turned the
shaft at a rate roughly proportional to the wind’s speed. Every rotation, a magnet passes alongside a reed
switch. The rate at which the reed switch opens en closes is a measure of the wind speed.

4

Figure 4: Cup anemometer

By connecting one side of the reed switch to ground and the other via a pull-up resistor to the supply voltage
the mechanical switching action is translated to an electrical pulse signal. This pulse can be read by a micro-
controller.

0V

VCC

t

v = ⅔t [m/s]

Figure 5: Cup anemometer: theory of operation

6.2 Wind direction
Measuring the wind direction is done by a wind vane. It consists of a vertical blade mounted on a vertical shaft.
Because the blade can turn, it will always find the position of the least air resistance. The shape of the blade is
chosen so that it will always points directly to the wind. A magnet mounted on the shaft rotates past several
reed switches. The switch that is closest to the magnet will close. If the magnet is precisely between two reed
switches both switches will close increasing the resolution of the wind vane.

5

Figure 6: Wind vane

Each reed switch is connected to a resistor and every resister has a different value. The total resistance of the
network will change according to the wind direction. By connecting one side of the network to ground and
the other side via a resistor to VCC, a resisive divider in made. This resistive divider converts the variable
resistance to an analog voltage which can be sampled by the A/D converter of a micro-controller.

0V

N

S

W E

NENW

SW SO

Mechanical arrangement Electrical arrangement

Figure 7: Wind vane: theory of operation

Direction Resistance
0° 33kΩ
22.5° 6.57kΩ
45° 8.2kΩ
67.5° 891Ω
90° 1kΩ
112.5° 688Ω
135° 2.2kΩ
157.5° 1.41kΩ
180° 3.9kΩ
202.5° 3.14kΩ
225° 16kΩ

6

Direction Resistance
247.5° 14.12kΩ
270° 120kΩ
292.5° 42.12kΩ
315° 64.9kΩ
337.5° 21.88kΩ

6.3 Rain fall
Measuring the amount of rain fall is done by a self-emptying tipping bucket. Rainwater is collected and funneled
to a tipping bucket. The bucket tips over when a certain amount of water is collected. The bucket drains and
a second bucket is automatically placed under the funnel. When a certain amount of water is collected in this
second bucket it will tip over and the first bucket is raised again.

Figure 8: Rain meter

Every time the bucket tips over a magnet passes by a reed switch, which closes and opens again. As with
the cup anemometer this mechanical movement can be translated to an electrical pulse by connecting one side
of the switch to ground and the other side via a pull-up resistor to VCC. This pulse can than be read by a
micro-controller.
NOTE The rain meter is very sensitive: even a small amount of movement and the bucket tips over. Mounting
the rain meter in the mast together with the wind meters can cause false triggers from the rocking motion of
the mast.

7

0V

VCC

bucket tipping over

one pulse = 0.2794 mm of rain

Figure 9: Rain meter: theory of operation

6.4 Humidity
Measuring the relative humidity is done by an electronic sensor based on capacitive sensing using polymeric di-
electrics. The humidity sensor is a small capacitor consisting of a hygroscopic dielectric material placed between
a pair of electrodes. Absorption of moisture by the sensor results in an increase in sensor capacitance. The
opposite is also true: when the moisture disappears, sensor capacitane decreases. There is a direct relationship
between relative humidity, the amount of moisture present in the sensor, and the sensor capacitance. The
relative humidity is defined as the ratio of the amount of water vapor in the air at a specific temperature to
the maximum amount that the air could hold at that temperature, expressed as a percentage. As the humidity
sensor has a build in temperature sensor, it can calculate the relative humidity.

Figure 10: Humidity sensor

The Si7021 humidity sensor has an I²C bus for communication with a micro-controller.

8

Figure 11: Humidity sensor: block diagram

6.5 Temperature
Measuring the temperature is done by the build in temperature sensor of the humidity sensor. This sensor is
used by the humidity sensor to calculate the relative humidity. But as this sensor is very accurate it can be
used for ambient temperature measurments.

6.6 Atmospheric pressure
Measuring the atmospheric pressure is done by an electronic sensor based on a piezo-resistive pressure sensing
element. The piezo-resistive effect is a change in the electrical resistivity of a semiconductor or metal when
mechanical strain is applied. In this case the strain comes from the atmospheric pressure. The sensor measures
the resistance which is proportional to the atmospheric pressure.

Figure 12: Piezo-resistive pressure sensor

The BMP280 pressure sensor has an on board temperature sensor which can also be used to measure the ambient
temperature. As this sensor is less accurate compared to the sensor of the Si7021 humidity sensor, the sensor
is only used as a backup sensor. The BMP280 has an I²C bus for communication with a micro-controller.

9

Figure 13: Pressure sensor: block diagram

6.7 Illumination
This sensor is still under development.

6.8 ModBus interface
The RS-485 interface is build with a MAX485E driver chip from Maxim Integrated. Nothing much to say as
the implementation is pretty much following the typical application from the datasheet.

Figure 14: RS-485 interface

If the device is the first or last device on the RS-485 bus, a 120 Ohm termination resistor can be enabled by
placing a jumper on header J7.

The Arduino micro-controller can be programmed via an in circuit programmer, which shares the serial port
with the MAX485E. Resistor R5 isolates the output of the MAX485 from the signal of the programmer.

6.9 I²C bus
The I²C bus is integrated in the micro-controller. But because the micro-controller uses a power supply of 5
Volt and the I²C sensors use 3.3 Volt a bidirectional level shifter is needed. This way the sensors can be used

10

on the 5V I²C bus without the risk of damaging the sensors.

Figure 15: I²C bus level shifter

Let’s assume the I²C signal lines on either end of the MOSFETs are either outputting a logic high or is configured
as an input. Effectively this means there is nothing pulling the signal levels down.

The voltage between the gate and source of both MOSFETs is at 0V (both are at 3.3V) so the MOSFET is
switched off. Therefore both sides of the MOSFETs are logic high.

When either of the 3.3 Volt signal lines outputs a logic low the corresponding drain is pulled to ground. Now
the voltage between the gate and the source is 3.3V and the MOSFET turns on causing the 5 Volt side to go
low as well.

When either of the 5 Volt signal lines outputs a logic low the body diode of the corresponding MOSFET start
conducting, causing the source voltage to drop below the gate voltage. The MOSFET switches on and the 3.3
volt side goes low.

6.10 Power supply
Typical, a 12 Volt power supply is used to power the device, but it can be powered from a wide range of voltages,
from 6.5 to 36 Volt. A switching regulator (U3) supplies the 5 Volt power rail and a linear low drop regulator
(U4) supplies the 3.3 volt power rail.

Figure 16: Power supply

6.10.1 Input protection

C1 and C5 short out high frequency signals, protecting the input from ESD. Bidirectional transient-voltage-
suppression diodes D1 end D2 clamp transient voltages, again protecting the input from ESD.

And than Q3 and its surrounding components: this is the reverse polarity protection. Usually, a series diode is
used, but due to the voltage drop across such a diode it dissipates energy which is wasteful. The circuit with
Q3 on the other hand has a very low voltage drop resulting in an almost zero loss solution.

If VCC is applied in the correct polarity, the source will immediately rise to the about VCC because of the
body diode conducting.

The gate will charge towards -VCC with respect to the source through R1. When the gate reaches the threshold
voltage the MOSFET channel will begin to conduct, and by the time the gate-source voltage reaches a few
volts the MOSFET channel will be conducting almost all the current, the output voltage will be close to VCC.
It continues to charge until it reaches about -10V at which point the zener diode begins to shunt significant
current away from the gate.

11

In steady state with VCC on the drain the gate sits at -10V with respect to the source, and the MOSFET
happily conducts in the reverse direction.

When VCC is applied in the reverse polarity, the body diode of the MOSFET cannot conduct. Only a small
leakage current can flow from the source to the drain via resistor R1 and zener diode D3, which now acts as a
normal diode. The gate and the source are now at almost the same potential and the MOSFET cannot conduct,
protecting the device from reverse polarity.

Figure 17: Reverse polarity protection

6.11 Microcontroller
The heart of the circuit is an Arduino Pro Mini, which is basically an Atmel ATmega328P with a special Arduino
bootloader, making it an easy platform for developing software.

Figure 18: Microcontroller

Both the signals from the rain meter and the cup anemometer are connected to interrupt pins of the micro-
controller. The signal from the rain meter is lightly filtered by C8. The output of the wind vane is connectd to
an analog input of the micro-controller.

The ModBus address can be set by DIP switch J9.

7 Theory of operation - Software
7.1 Wind speed
The pulse from the cup anemometer is connected to an interrupt input of the micro-controller. Every time its
logic level changes an interrupt routine is called. This routine increments a counter and checks how many time
has passed since the previous interrupt call. If the previous call was more than 6 seconds ago, the wind speed
is (almost) zero. If the previous call was just over 3 second ago the interrupt counter now holds the amount
of pulses in three seconds. This value is stored and from that value the wind speed can be calculated. If the
previous call was less than 3 seconds ago the measurement is still in progress and no further action is taken. A

12

measurment period of three seconds is choosen because it is the standard as used by the Dutch meteorological
institute (KNMI).

Interrupt from
wind meter

count++

speed = 0
count = 0

speed = count
count = 0

End

Save wind speedNo wind Still measuring...

< 3 second> 6 second

Do nothing

Time since last
interrupt

else

Figure 19: Wind speed interrupt

7.2 Wind direction
The analog signal from the wind vane is fed into the analog to digital converter of the micro-controller. The
software samples this signal and determines which value from a lookup table is closest to the value from the
ADC. The lookup table now gives the wind direction in degrees.

A/D converter
Linear search
to find closest

value
Lookup tableAnalog signal

from wind vane

Wind direction

Figure 20: Getting the wind direction

As the tolerances between micro-controllers can be high, the wind vane has to be calibrated in order to get a
correct lookup table.

7.3 Rain fall
The pulse from the rain meter is connected to an interrupt input of the micro-controller. Every time a rising
edge is detected an interrupt routine is called. This routine debounces the signal and increments the rain
counter. This counter can be used to calculate the rain fall.

7.4 Humidity
Via the I²C bus, the humidity value of the sensor is read. As the sensor can become saturated with moisture
it can get stuck at 100%. This happens in particular with fog or other high humidity and condensing weather
types. The sensor has a build in heater to drive of moisture and thus preventing this problem. Because the
temperature of the sensor rises when the heater is turned on, accurate ambient temperature and humidity
readings are no longer possible. But with a smart algorithm it is possible to get the benefits of the build in
heater while still being able to use the sensor as an ambient thermometer.

13

When the humidity rises above 95% for more than an hour the current temperature and humidity are stored
and the heater is switched on for 5 minutes. Than the heater is switched off again. If after 15 minutes the
humidity is still above 95% the heater is turned on again for another 5 minutes. But not before the temperature
and humidity are measured and stored, as the sensor is now cooled off to ambient temperature. If the humidity
is below 95% the sensor is free from moisture and the process is not repeated for another hour.

When the heater algorithm is active, the temperature and humidity values are updated every 20 minutes instead
of every 2 seconds. Statis bit 0 (ModBus register 30014) indicated if the heater is on or off and status bit 1
gives the update rate of the temperature and humidity values.

This algorithm can be enabled by setting the HeaterCoil (see ModBus secion).

Smart heater

Measure humidity
Measure temperature

RH>95%
for more

than 1 hour

RH>95%

Heater ON

Wait 5 minutes

Measure humidity
Measure temperature

Heater OFF

Wait 15 minutes

No

Yes

NoYes

Figure 21: Heater algorithm

7.5 Temperature
The temperature is read from the humidity sensor as this sensor gives the most accurate temperature readings.
When the heater is on (see section humidity above) the temperature readings are temporary stopped and only
updated every 20 minutes. As a backup, the slightly less accurate temperature readings from the pressure sensor
can be used.

7.6 Atmospheric pressure
Via the I²C bus, the atmospheric pressure value of the sensor is read. There is nothing further to say about this
sensor: it is rather boring.

7.7 Illumination
This sensor is still under development.

14

7.8 ModBus interface
The weather station uses ModBus RTU over a simplex RS-485 line. For now, the ModBus address is hard coded
as 14 in the software. The values are available in the input registers and can be read via function code 04.

Below an example of how to read the wind direction and enable the heater algorithm in Python using the
minimalmodbus library.

#!/usr/bin/env python3
import minimalmodbus

port name, slave address (in decimal)
instrument = minimalmodbus.Instrument('/dev/ttyUSB1', 14)

register number, number of decimals, function code
wind_direction = instrument.read_register(1, 1, 4)
print(wind_direction)

register address, value, function code
instrument.write_bit(0, 1, 5)

7.8.1 Input registers (read only)

Input registers are numbered 30001 to 39999 but have data addresses 0x000 to 0x270E. The measurements and
order of the measurements are the same as for APRS weather reports. But of course we use SI units.

Address Description Units
00 Device ID (0x5758) NO UNIT
01 Wind direction degrees * 10
02 Wind speed (average of 10 minutes) m/s * 100
03 Wind gust (peak of last 10 minutes) m/s * 100
04 Temperature (two’s complement) degrees Celcius * 100
05 Rain last hour l/m2 * 100
06 Rain last 24 hours l/m2 * 100
07 Rain since midnight NOT IMPLEMENTED
08 Humidity percent * 100
09 Barometric pressure hPa * 10
10 Luminosity W/m2
11 Snow fall NOT IMPLEMENTED
12 Raw rain counter l/m2 * 100
13 Temperature (two’s complement) degrees Celcius * 100
14 Status bits see table below

NOTE Register 13 holds the backup temperature reading from the pressure sensor.

Status bits Description logic 0 logic 1
0 Heater status heater off heater on
1 Temp/humidity update every 20 minutes every 2 seconds
2 Heater algorithm disabled enabled

The ModBus registers are 16 bit wide. For better precision, some units are scaled by a factor of 10 or 100. This
way, values with up to two decimal points can be stored as 16 bit integer values. Just divide by 10 or 100 to
get the floating point values.

7.8.2 Output coils (write only)

Output coils registers are numbered 1 to 9999 but have data addresses 0x000 to 0x270E. The default value of
a register is 0.

15

Address Description logic 0 logic 1
0 Heater algorithm disabled enabled

8 Prototype
I wanted to locate the weather station at about 100 meters from the house. That meant that interfacing the
weather station was not just a matter of connecting a wire to it. And 100 meters is also a bit much for a wifi
connection. As I already had experience with LoRa I opted for that. But not LoRaWAN, but LoRa APRS.
This is a ham radio network that I often use. I even run my own digipeater. So LoRa APRS it is.

Weather station
electronics

Raspberry Pi
digipeater

GPS LoRa

RS485

Server
LoRa

RS-485 interface

Grafana
dashboard

Figure 22: Block diagram of the prototype

The weather station’s RS-485 interface is connected to a Raspberry Pi Zero 2W running the aprx digipeater
software, as well as some specially written Python programs to interface the build in LoRa transceiver, the
GPS module and the weather station itself. Every 10 minutes the digipeater will read the weather station’s
registers and sends the data as PE1RXF telemetry messages (see https://www.meezenest.nl/mees-elektronica/
projects/aprs_telemetry/APRS_protocol_nodes_PE1RXF.pdf) over the APRS network to a server, which
presents the data in a Grafana dashboard. The digipeater can also send standardized APRS weather reports
over the APRS network. But more about this project can be found here: https://www.meezenest.nl/mees-
elektronica/RPi_LoRa_shield.html

16

https://www.meezenest.nl/mees-elektronica/projects/aprs_telemetry/APRS_protocol_nodes_PE1RXF.pdf
https://www.meezenest.nl/mees-elektronica/projects/aprs_telemetry/APRS_protocol_nodes_PE1RXF.pdf
https://www.meezenest.nl/mees-elektronica/RPi_LoRa_shield.html
https://www.meezenest.nl/mees-elektronica/RPi_LoRa_shield.html

Figure 23: The prototype in the garden

As a housing for the prototype, I used an old beehive. These are weatherproof and I had one laying around.

Figure 24: Closeup of the sensors

17

Figure 25: Inside the beehive

9 Specifications
9.1 Wind

• Wind speed is measured by taking 3 second averages from the cup anemometer and using these samples
to calculate the average over a 10 minute periode.

• Wind gust is measured by taking 3 second averages from the cup anemometer.

• Wind vane has 8 main directions and another 8 directions in between. But these last do not have the
same weight, eg. these positions are not as likely to be measured as the main directions. This is due
to the construction of the wind vane: it has eight reed switches for the main directions and if the wind
direction happens to sit exactly in between two reed switches, both switches are closed giving the extra 8
sub directions. Not great, but it is what it is…

9.2 Rain
Resolution: 0.2794 mm/impulse

9.3 Humidity
Operating range : 0 - 100 % RH
Recommended range : 20 - 80 % RH
Accuracy : +/- 3 % RH (0-80 % RH)

+/- 4.5 % (max when > 80 % RH)

Heater to drive of moisture (can be enabled via ModBus)

9.4 Pressure
Operating range : 300 - 1100 hPa
Accuracy : +/- 1.0 hPa (0 - 65 °C)

+/- 1.7 hPa (-20 - 0 °C)

9.5 Temperature
Main sensor

Operating range : -10 - 85 °C (typ)
-40 - 85 °C (max)

Accuracy : +/- 0.3 °C (typ)
+/- 0.4 °C (max)
+/- 0.5 °C (max when < -10°C)

18

Backup sensor

Operating range : 0 - 65 °C (typ)
-40 - 85 °C (max)

Accuracy : +/- 0.5 °C (25 °C)
+/- 1.0 °C (0 - 65 °C)

9.6 ModBus
Physical : RS-485 simplex RTU
Settings : 9600 bd 8N1
Address : 14

10 Schematic

11 Software dependencies
• Arduino IDE

11.1 Arduino libraries
• https://github.com/sparkfun/SparkFun_Weather_Meter_Kit_Arduino_Library
• https://github.com/orgua/iLib
• https://github.com/epsilonrt/modbus-arduino
• https://github.com/epsilonrt/modbus-serial

Libraries are included with the source code of this project

12 License
Copyright (C) 2023, 2024 M.T. Konstapel

https://meezenest.nl/mees/

The software is published as open-source software (GPL). The hardware is published as open-source hardware
(OSH).

12.1 Software
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option)
any later version.

19

https://meezenest.nl/mees/

12.2 Hardware and documentation
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

20

	Why do you need a weather station?
	What should a weather station measure?
	Measurements

	What sensors do we need?
	Wind and rain
	Temperature, humidity and air pressure
	Sensors

	What to use for communication with the outside world?
	ModBus

	What else?
	Theory of operation - Hardware
	Wind speed
	Wind direction
	Rain fall
	Humidity
	Temperature
	Atmospheric pressure
	Illumination
	ModBus interface
	I²C bus
	Power supply
	Input protection

	Microcontroller

	Theory of operation - Software
	Wind speed
	Wind direction
	Rain fall
	Humidity
	Temperature
	Atmospheric pressure
	Illumination
	ModBus interface
	Input registers (read only)
	Output coils (write only)

	Prototype
	Specifications
	Wind
	Rain
	Humidity
	Pressure
	Temperature
	ModBus

	Schematic
	Software dependencies
	Arduino libraries

	License
	Software
	Hardware and documentation

