Weather station with ModBus over RS-485
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

476 lines
16 KiB

/*********************************************************************************
*
* weather_station is a weatherstation build around the SparkFun weather meter
* It can measure wind speed, wind gust , wind direction, rain fall, temperature,
* humidity and air pressure and has an RS-485 ModBus interface for your convenience.
*
* LED on Arduino gives status:
*
* ON : Booting
* BLINK : I2C ERROR
* FLASH : Heartbeat
*
* Copyright (C) 2023, 2024 M.T. Konstapel https://meezenest.nl/mees
*
* This file is part of weather_station
*
* weather_station is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* weather_station is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with weather_station. If not, see <https://www.gnu.org/licenses/>.
*
**********************************************************************************/
#include <ModbusSerial.h>
#include "SparkFun_Weather_Meter_Kit_Arduino_Library.h"
//I2C
#include <Wire.h>
#include "i2c.h"
//Temperature and humidity sensor
#include "i2c_SI7021.h"
SI7021 si7021;
// Pressure sensor
#include "i2c_BMP280.h"
BMP280 bmp280;
float PRESSURE_OFFSET = 210; // Calibration of BMP280: offset in Pascal
/**************************/
/* Configurable variables */
/**************************/
// Sparkfun weather station
int windDirectionPin = A0;
int windSpeedPin = 2;
int rainfallPin = 3;
// RS485 driver
#define RS485_RE 11 // Tight to RS485_DE and must be configured as an input to prevent a short circuit
#define RS485_DE 12
// Used Pins
const int TxenPin = RS485_DE; // -1 disables the feature, change that if you are using an RS485 driver, this pin would be connected to the DE and /RE pins of the driver.
// ModBus address
const byte SlaveId = 14;
/* Modbus Registers Offsets (0-9999)
*
* 30000: Weater station ID (0x5758)
* 30001: Wind direction (degrees)
* 30002: Wind speed (average over 10 minutes in km/h)
* 30003: Wind gust (peak wind speed in the last 10 minutes in km/h)
* 30004: Temperature (degrees Celcius)
* 30005: Rain last hour (l/m2)
* 30006: Rain last 24 hours (l/m2)
* 30007: Rain since midnight (l/m2)
* 30008: Humidity (percent)
* 30009: Barometric pressure (hPa)
*
*/
const int SensorIDIreg = 0;
const int SensorWindDirectionIreg = 1;
const int SensorWindSpeedIreg = 2;
const int SensorWindGustIreg = 3;
const int SensorTemperatureIreg = 4;
const int SensorRainIreg = 5;
const int SensorRainLast24Ireg = 6;
const int SensorRainSinceMidnightIreg = 7;
const int SensorHumidityIreg = 8;
const int SensorPressureIreg = 9;
// RS-485 serial port
#define MySerial Serial // define serial port used, Serial most of the time, or Serial1, Serial2 ... if available
const unsigned long Baudrate = 9600;
/******************************/
/* END Configurable variables */
/******************************/
// Create an instance of the weather meter kit
SFEWeatherMeterKit weatherMeterKit(windDirectionPin, windSpeedPin, rainfallPin);
// ModbusSerial object
ModbusSerial mb (MySerial, SlaveId, TxenPin);
unsigned long ts;
unsigned long HourTimer;
int WindGustData1[30];
unsigned char WindGustData1Counter=0;
int WindGustData2[10];
unsigned char WindGustData2Counter=0;
int WindAverageData1[30];
unsigned char WindAverageData1Counter=0;
int WindAverageData2[10];
unsigned char WindAverageData2Counter=0;
int RainPerHour[24];
unsigned char RainPerHourCounter=0;
struct MeasuredData {
int WindDirection;
int WindSpeed;
int WindGust;
int Rain;
int RainLast24;
int SensorRainSinceMidnight;
int Pressure;
float Temperature;
float Humidity;
bool HeaterStatus = 0;
} MeasuredData;
// Read Si7021 sensor and process data
void ReadSi7021 (void)
{
si7021.triggerMeasurement();
si7021.getHumidity(MeasuredData.Humidity);
si7021.getTemperature(MeasuredData.Temperature);
if (MeasuredData.Humidity>100 || MeasuredData.Humidity<0)
MeasuredData.Humidity = 100;
//If humidity is larger than 96% switch on heater to get more acurate measurement and prevent memory offset
//Switch off when lower than 94% (hysteresis)
if (MeasuredData.Humidity > 96 && !MeasuredData.HeaterStatus) {
Serial.print(F("Heater on."));
MeasuredData.HeaterStatus = 1;
si7021.setHeater(MeasuredData.HeaterStatus);
}
if (MeasuredData.Humidity < 94 && MeasuredData.HeaterStatus) {
Serial.print(F("Heater off."));
MeasuredData.HeaterStatus = 0;
si7021.setHeater(MeasuredData.HeaterStatus);
}
// Scale for more decimal positions when converted to integer value for ModBus
MeasuredData.Humidity *= 100;
MeasuredData.Temperature *= 100;
}
// Read BMP280
void ReadBMP280 (void)
{
// MeasuredData.Pressure=0;
bmp280.awaitMeasurement();
float temperature;
bmp280.getTemperature(temperature);
float pascal;
bmp280.getPressure(pascal);
pascal = (pascal - PRESSURE_OFFSET) / 10; // Convert to hPa
MeasuredData.Pressure = pascal;
bmp280.triggerMeasurement();
// When humidity is high, the heater of the Si7021 is on. This causes the temperature sensor of the humidity sensor to heat up.
// Use temperature sensor of BMP280 instead.
if (MeasuredData.HeaterStatus) {
bmp280.getTemperature(MeasuredData.Temperature);
// Scale for more decimal positions when converted to integer value for ModBus
MeasuredData.Temperature *= 100;
}
}
int MaxOfArray (int array[], unsigned int length)
{
int maximum_value = 0;
while (length--)
{
if (array[length] > maximum_value)
maximum_value = array[length];
}
return maximum_value;
}
int AverageOfArray (int array[], unsigned int length)
{
int tmp_value = 0;
unsigned char tmp_length = length;
int average_value = 0;
while (length--)
{
tmp_value += array[length];
}
average_value = tmp_value/tmp_length;
return average_value;
}
// Call this function every 2 seconds
void ReadSparkfunWeatherStation (void)
{
unsigned char cnt=0;
float tmpRegister;
MeasuredData.WindDirection = weatherMeterKit.getWindDirection();
tmpRegister = 100*(weatherMeterKit.getWindSpeed())/3.6; // Use float for conversion to m/s times 100, than put it in integer register for ModBus
MeasuredData.WindSpeed = tmpRegister;
tmpRegister = 100*weatherMeterKit.getTotalRainfall(); // Use float for conversion to l/m2 times 100, than put it in integer register for ModBus
MeasuredData.Rain = tmpRegister;
// FIFO for calculating wind gust of last 10 minutes
// to preserve valuable RAM we caanot store all measurements of the last 10 minutes.
// So we use a hack: store the last 30 values in a FIFO and every minute we store the maximum value from this FIFO in another FIFO.
// This second FIFO is 10 deep: it stores the maximum values of the last 10 minutes.
// The maximum value from this FIFO is the maximum wind gust of the last 10 minutes.
if ( WindGustData1Counter < 29 )
{
WindGustData1Counter++;
}
else
{
if ( WindGustData2Counter < 9 )
{
WindGustData2Counter++;
}
else
{
WindGustData2Counter=0;
}
WindGustData2[WindGustData2Counter] = MaxOfArray(WindGustData1, 30);
WindGustData1Counter=0;
}
WindGustData1[WindGustData1Counter] = MeasuredData.WindSpeed;
MeasuredData.WindGust= MaxOfArray(WindGustData2, 10);
// Smart FIFO, same as for Wind Gust, but now for average wind speed over 10 minutes
if ( WindAverageData1Counter < 29 )
{
WindAverageData1Counter++;
}
else
{
if ( WindAverageData2Counter < 9 )
{
WindAverageData2Counter++;
}
else
{
WindAverageData2Counter=0;
}
WindAverageData2[WindAverageData2Counter] = AverageOfArray(WindAverageData1, 30);
WindAverageData1Counter=0;
WindAverageData1[WindAverageData1Counter] = MeasuredData.WindSpeed;
}
WindAverageData1[WindAverageData1Counter] = MeasuredData.WindSpeed;
MeasuredData.WindSpeed = AverageOfArray(WindAverageData2, 10);
// Record rainfall in one hour, save last 24 readings in FIFO
if ( ( millis() - HourTimer) >= 3.6e+6) {
HourTimer = millis();
if ( RainPerHourCounter < 23 )
{
RainPerHourCounter++;
} else {
RainPerHourCounter=0;
}
RainPerHour[RainPerHourCounter] = MeasuredData.Rain;
weatherMeterKit.resetTotalRainfall();
// Calculate rain fall in the last 24 hours
MeasuredData.RainLast24=0;
for (cnt=0; cnt<24;cnt++) {
MeasuredData.RainLast24 += RainPerHour[cnt];
}
}
MeasuredData.Rain = RainPerHour[RainPerHourCounter];
}
void setup() {
MySerial.begin (Baudrate); // works on all boards but the configuration is 8N1 which is incompatible with the MODBUS standard
// prefer the line below instead if possible
// MySerial.begin (Baudrate, MB_PARITY_EVEN);
// initialize digital pin LED_BUILTIN as an output and turn it on.
pinMode(LED_BUILTIN, OUTPUT);
digitalWrite(LED_BUILTIN, HIGH);
//Setup control lines for RS485 driver
pinMode(RS485_RE,INPUT); // In hardware connected to RS485_DE. Should be input to prevent a short circuit!
pinMode(RS485_DE,OUTPUT);
digitalWrite(RS485_DE,LOW);
mb.config (Baudrate);
mb.setAdditionalServerData ("TEMP_SENSOR"); // for Report Server ID function (0x11)
// Add SensorIreg registers - Use addIreg() for analog Inputs
mb.addIreg (SensorIDIreg);
mb.addIreg (SensorWindDirectionIreg);
mb.addIreg (SensorWindSpeedIreg);
mb.addIreg (SensorWindGustIreg);
mb.addIreg (SensorTemperatureIreg);
mb.addIreg (SensorRainIreg);
mb.addIreg (SensorRainLast24Ireg);
mb.addIreg (SensorRainSinceMidnightIreg);
mb.addIreg (SensorHumidityIreg);
mb.addIreg (SensorPressureIreg);
// Set Weather station ID
mb.Ireg (SensorIDIreg, 0x5758);
// Set unused register to zero
mb.Ireg (SensorRainSinceMidnightIreg, 0);
Serial.println(F("Weather station"));
//Initialize Si7021 sensor
Serial.print(F("Humidity sensor SI7021 "));
if (si7021.initialize())
Serial.println(F("found"));
else
{
Serial.println(F("missing"));
while(1) {
digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)
delay(500); // wait for half a second
digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
delay(500);
}
}
// Initialize BMP280 pressure sensor
Serial.print(F("Pressure sensor BMP280 "));
if (bmp280.initialize())
Serial.println(F("found"));
else
{
Serial.println(F("missing"));
while(1) {
digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the voltage level)
delay(500); // wait for half a second
digitalWrite(LED_BUILTIN, LOW); // turn the LED off by making the voltage LOW
delay(500);
}
}
// onetime-measure:
bmp280.setEnabled(0);
bmp280.triggerMeasurement();
// Expected ADC values have been defined for various platforms in the
// library, however your platform may not be included. This code will check
// if that's the case
#ifdef SFE_WMK_PLAFTORM_UNKNOWN
// The platform you're using hasn't been added to the library, so the
// expected ADC values have been calculated assuming a 10k pullup resistor
// and a perfectly linear 16-bit ADC. Your ADC likely has a different
// resolution, so you'll need to specify it here:
weatherMeterKit.setADCResolutionBits(10);
#endif
// Here we create a struct to hold all the calibration parameters
SFEWeatherMeterKitCalibrationParams calibrationParams = weatherMeterKit.getCalibrationParams();
// The wind vane has 8 switches, but 2 could close at the same time, which
// results in 16 possible positions. Each position has a resistor connected
// to GND, so this library assumes a voltage divider is created by adding
// another resistor to VCC. Some of the wind vane resistor values are
// fairly close to each other, meaning an accurate ADC is required. However
// some ADCs have a non-linear behavior that causes this measurement to be
// inaccurate. To account for this, the vane resistor values can be manually
// changed here to compensate for the non-linear behavior of the ADC
calibrationParams.vaneADCValues[WMK_ANGLE_0_0] = 943;
calibrationParams.vaneADCValues[WMK_ANGLE_22_5] = 828;
calibrationParams.vaneADCValues[WMK_ANGLE_45_0] = 885;
calibrationParams.vaneADCValues[WMK_ANGLE_67_5] = 702;
calibrationParams.vaneADCValues[WMK_ANGLE_90_0] = 785;
calibrationParams.vaneADCValues[WMK_ANGLE_112_5] = 404;
calibrationParams.vaneADCValues[WMK_ANGLE_135_0] = 460;
calibrationParams.vaneADCValues[WMK_ANGLE_157_5] = 82;
calibrationParams.vaneADCValues[WMK_ANGLE_180_0] = 91;
calibrationParams.vaneADCValues[WMK_ANGLE_202_5] = 64;
calibrationParams.vaneADCValues[WMK_ANGLE_225_0] = 185;
calibrationParams.vaneADCValues[WMK_ANGLE_247_5] = 125;
calibrationParams.vaneADCValues[WMK_ANGLE_270_0] = 285;
calibrationParams.vaneADCValues[WMK_ANGLE_292_5] = 242;
calibrationParams.vaneADCValues[WMK_ANGLE_315_0] = 628;
calibrationParams.vaneADCValues[WMK_ANGLE_337_5] = 598;
// The rainfall detector contains a small cup that collects rain water. When
// the cup fills, the water is dumped and the total rainfall is incremented
// by some value. This value defaults to 0.2794mm of rain per count, as
// specified by the datasheet
calibrationParams.mmPerRainfallCount = 0.2794;
// The rainfall detector switch can sometimes bounce, causing multiple extra
// triggers. This input is debounced by ignoring extra triggers within a
// time window, which defaults to 100ms
calibrationParams.minMillisPerRainfall = 100;
// The anemometer contains a switch that opens and closes as it spins. The
// rate at which the switch closes depends on the wind speed. The datasheet
// states that a wind of 2.4kph causes the switch to close once per second
calibrationParams.kphPerCountPerSec = 2.4;
// Because the anemometer generates discrete pulses as it rotates, it's not
// possible to measure the wind speed exactly at any point in time. A filter
// is implemented in the library that averages the wind speed over a certain
// time period, which defaults to 1 second. Longer intervals result in more
// accurate measurements, but cause delay in the measurement
calibrationParams.windSpeedMeasurementPeriodMillis = 1000;
// Now we can set all the calibration parameters at once
weatherMeterKit.setCalibrationParams(calibrationParams);
// Begin weather meter kit
weatherMeterKit.begin();
ts = millis();
RainPerHourCounter = ts;
}
void loop() {
// Call once inside loop() - all magic here
mb.task();
// Read each two seconds
if ( ( millis() - ts) >= 2000) {
ts = millis();
digitalWrite(LED_BUILTIN, HIGH); // LED as heartbeat
// Read temperature and humidity
ReadSi7021();
// Read pressure and temperature
ReadBMP280();
// Read Wind and rain
ReadSparkfunWeatherStation();
// Setting Sparkfun weather station registers
mb.Ireg (SensorWindDirectionIreg, MeasuredData.WindDirection);
mb.Ireg (SensorWindSpeedIreg, MeasuredData.WindSpeed);
mb.Ireg (SensorWindGustIreg, MeasuredData.WindGust);
mb.Ireg (SensorRainIreg, MeasuredData.Rain);
mb.Ireg (SensorRainLast24Ireg, MeasuredData.RainLast24);
mb.Ireg (SensorTemperatureIreg, MeasuredData.Temperature);
mb.Ireg (SensorHumidityIreg, MeasuredData.Humidity);
mb.Ireg (SensorPressureIreg, MeasuredData.Pressure);
// Debug wind vane
//Serial.print(F("\n Measured ADC: "));
//Serial.print(analogRead(windDirectionPin));
digitalWrite(LED_BUILTIN, LOW); // LED as heartbeat
}
}